Resumen
Objetivo. Investigar la producción científica en la intersección temática de la Ciencia de Datos (CD) y la Ciencia de la Información (CI). Método. Estudio informétrico, descriptivo, y de primera incursión, en el análisis del discurso escrito de los textos académicos incluidos en la Web of Science (WoS), periodo 1900 al 6 de noviembre de 2020, y cuya cobertura de búsqueda fue en las bases de datos: SCI-Expanded, SSCI, A&HCI, ESCI, CPCI-S, CPCI-SSH, BKCI-S y BKCI-SSH. Resultados. Se recuperaron y analizaron 49 documentos representados en 38 artículos, 7 textos de memorias de congresos, 2 capítulos de libro y 2 materiales editoriales. El conjunto de las investigaciones que tratan el tema de la CD y la CI sumaron 128 citas, 2.6 citas por documento e índice H: 7. Discusión. Conceptualmente, se encontró que para la CD y la CI su origen son los “datos” y que ambas disciplinas son predominantemente de carácter práctico. En aquellas investigaciones con mayor visibilidad hay participación multiautoral. La CD y la CI son áreas del conocimiento recientes en las cuales las tecnologías de la información son indispensables para el análisis de grandes cantidades de datos e información. Conclusiones. La CD y CI tienen un carácter intra y multi y transdisciplinar y se caracterizan por utilizar las tecnologías de la información para el análisis de grandes cantidades de datos e información.
Citas
Almind, T.C. e Ingwersen, P. (1997). Informetric Analyses on the World Wide Web: Methodological Approaches to Webometrics. Journal of documentation, 53(4), 404-426.
Arnaboldi, M., y Azzone, G. (2020). Data Science in the Design of Public Policies: Dispelling the Obscurity in Matching Policy Demand and Data Offer. Heliyon, 6(6), 13, e04300. DOI: https://doi.org/10.1016/j.heliyon.2020.e04300
Bicalho, L., y Oliveira, M. D. (2011). A teoria e a prática da interdisciplinaridade em Ciência da Informação. Perspectivas em Ciência da Informação, 16(3), 47-74. Recuperado de https://www.scielo.br/pdf/pci/v16n3/04.pdf
Borko, H. (1968). Information Science: What is it? American Documentation, 19(1), 3-5.
Breunig, M., Bradley, P. E., Jahn, M., Kuper, P., Mazroob, N., Rosch, N., Al-Doori, M., Stefanakis, E., y Jadidi, M. (2020). Geospatial Data Management Research: Progress and Future Directions. ISPRS International Journal of Geo-Information, 9(2), 20, 95. DOI: https://doi.org/10.3390/ijgi9020095
Califf, R. M. (2018). Future of Personalized Cardiovascular Medicine JACC State-of-the-Art Review. Journal of the American College of Cardiology, 72(25), 3301-3309. DOI: https://doi.org/10.1016/j.jacc.2018.09.079
Casarosa, V., Ruggieri, S., Salvatori, E., Simi, M., & Turbanti, S. (2020). Educational Ecosystems for Information Science: the Case of the University of Pisa. Education for Information, 36(2), 119-138. DOI: https://doi.org/10.3233/efi-190330
Cervone, H. F. (2016). Informatics and Data Science: An Overview for the Information Professional. Digital Library Perspectives, 32(1), 7-10. DOI: https://doi.org/10.1108/dlp-10-2015-0022
Cho, J. (2019). Subject Analysis of LIS Data Archived in a Figshare Using Co-occurrence Analysis. Online Information Review, 43(2), 256-264. DOI: https://doi.org/10.1108/oir-12-2017-0369
Da Sylva, L. (2017). Les données et leurs impacts théoriques et pratiques sur lesprofessionnels de l’information [The Theoretical and Practical Impact of Data on Information Professionals]. Documentation Et Bibliotheques, 63(4), 5-34. DOI: https://doi.org/10.7202/1042308ar
Figuerola, C. G., Marco, F. J. G., & Pinto, M. (2017). Mapping the Evolution of Library and Information Science (1978–2014) Using Topic Modeling on LISA. Scientometrics, 112(3), 1507-1535. DOI: https://doi.org/10.1007/s11192-017-2432-9
Freire, G. H. D., y Freire, I. M. (2019). Ciência de Dados e Ciência da Informação [Data Science and Information Science]. Informação & Sociedade: Estudos, 29(3), 3-4. Recuperado de https://brapci.inf.br/index.php/res/download/147968
Grimaldi, D., Diaz, J., Arboleda, H., y Fernandez, V. (2019). Data Maturity Analysis and Business Performance. A Colombian Case Study. Heliyon, 5(8), 9, e02195. DOI: https://doi.org/10.1016/j.heliyon.2019.e02195
Hagen, L. (2020). Teaching Undergraduate Data Science for Information Schools. Education for Information, 36(2), 109-117. DOI: https://doi.org/10.3233/efi-200372
Haghighatlari, M., Vishwakarma, G., Altarawy, D., Subramanian, R., Kota, B. U., Sonpal, A., Setlur, S., y Hachmann, J. (2020). ChemML: A Machine Learning and Informatics Program Package for the Analysis, Mining, and Modeling of Chemical and Materials Data. Wiley Interdisciplinary Reviews-Computational Molecular Science, 10(4), 10. DOI: https://doi.org/10.1002/wcms.1458
Hirsch, J. E., y Buela-Casal, G. (2014). The Meaning of the H-index. International Journal of Clinical and Health Psychology, 14(2), 161-164. DOI: https://doi.org/10.1016/S1697-2600(14)70050-X
Kazakci, A. O. (2015). Data Science as a New Frontier for Design. En C. Weber, S. Husung, M. Cantamessa, G. Cascini, D. Marjanovic, & S. Venkataraman (Eds.), Design (ICED 15) Vol 10: Design Information and Knowledge Management Milan, Italy, 27-30.07.15 . Congreso organizado por Mines ParisTech, Milan, Italia. Recuperado de https://www.designsociety.org/download-publication/37969/DATA+SCIENCE+AS+A+NEW+FRONTIER+FOR+DESIGN
Maghsoodi, A. I., Kavian, A., Khalilzadeh, M., & Brauers, W. K. M. (2018). CLUS-MCDA: A Novel Framework Based on Cluster Analysis and Multiple Criteria Decision Theory in a Supplier Selection Problem. Computers & Industrial Engineering, 118, 409-422. DOI: https://doi.org/10.1016/j.cie.2018.03.011
Martínez Musiño, C. (2012). La ciencia de la información como plataforma para potenciar el estudio de los flujos de la información en las organizaciones. e-Ciencias de la Información, 2(1), 1-14. DOI: https://DOI 10.15517/ECI.V2I1.1212
Miller, H. J. (2017). Geographic Information Science I: Geographic Information Observatories and Opportunistic GIScience. Progress in Human Geography, 41(4), 489-500. DOI: https://doi.org/10.1177/0309132517710741
Mochizuki, M. (2020). Exploration of Education and Research on Drug Informatics. Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan, 140(4), 543-554. DOI: https://doi.org/10.1248/yakushi.19-00250
Morriello, R. (2020). Birth and Development of Data Librarianship. Jlis.It, 11(3), 1-15. DOI: https://doi.org/10.4403/jlis.it-12653
Nüst, D., Granell, C., Hofer, B., Konkol, M., Ostermann, F. O., Sileryte, R., y Cerutti, V. (2018). Reproducible Research and GIScience: An Evaluation Using AGILE Conference Papers. Peerj, 6(23), e5072. DOI: https://doi.org/10.7717/peerj.5072
Ortiz-Repiso, V., Greenberg, J., y Calzada-Prado, J. (2018). A Cross-Institutional Analysis of Data-Related Curricula in Information Science Programmes: A Focused Look at the iSchools. Journal of Information Science, 44(6), 768-784. DOI: https://doi.org/10.1177/0165551517748149
Paul, P., Bhuimali, A., y Aithal, P. S. (2017). Information Science: Science or Social Science? International Journal on Recent Researches in Science, Engineering & Technology, 5(9), 54-65. Recuperado de https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3042150
Paul, P. K. (2018). The Context of IST for Solid Information Retrieval and Infrastructure Building: Study of Developing Country. International Journal of Information Retrieval Research, 8(1), 86-100. DOI: https://doi.org/10.4018/ijirr.2018010106
Paul, P. K. y Dey, J. L. (2017). Data Science Vis-a-Vis Efficient Healthcare and Medical Systems: A Techno-Managerial Perspective. En 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), 2017, Congreso organizado por IEEE, Vellore, India. DOI: 10.1109/IPACT.2017.8245148.
Saracevic, T. (1999). Information Science. Journal of the American Society for Information Science, 50(12), 1051-1063. DOI: https://doi.org/10.1002/(SICI)1097-4571(1999)50:12<1051::AID-ASI2>3.0.CO;2-Z
Saracevic, T. (1996). Ciência de Informação: Origem, evolução e relações. Perspectivas em Ciência da Informação, Belo Horizonte, 1(1), 41-46. Recuperado de http://portaldeperiodicos.eci.ufmg.br/index.php/pci/article/view/235/22
Saracevic, T. (1995). Interdisciplinary Nature of Information Science. Ciência da informação, 24(1), 36-41. Recuperado de https://brapci.inf.br/_repositorio/2010/03/pdf_dd085d2c4b_0008887.pdf
Sheble, L. (2016). Research Synthesis Methods and Library and Information Science: Shared Problems, Limited Diffusion. Journal of the Association for Information Science and Technology, 67(8), 1990-2008. DOI: https://doi.org/10.1002/asi.23499
Tague-Sutcliffe, J. 1994. Introducción a la informetría. Acimed, 2(3), 26-35.
Thill, J. C. (2018). Innovations in GIS&T, Spatial Analysis, and Location Modeling. En J. C. Thill (Ed.), Spatial Analysis and Location Modeling in Urban and Regional Systems (pp. 1-6). Alemania: Springer-Verlag. DOI: https://doi.org/10.1007/978-3-642-37896-6_1
Tucker, E. C., Capps, C. J., y Shamir, L. (2020). A Data Science Approach to 138 Years of Congressional Speeches. Heliyon, 6(8), 8, e04417. DOI: https://doi.org/10.1016/j.heliyon.2020.e04417
Virkus, S., y Garoufallou, E. (2020). Data Science and Its Relationship to Library and Information Science: A Content Analysis. Data Technologies and Applications, 21. DOI: https://doi.org/10.1108/dta-07-2020-0167
Virkus, S., y Garoufallou, E. (2019). Data Science from a Library and Information Science Perspective. Data Technologies and Applications, 53(4), 422-441. DOI: https://doi.org/10.1108/dta-05-2019-00760
Wang, L. (2018). Twinning Data Science with Information Science in Schools of Library and Information Science. Journal of Documentation, 74(6), 1243-1257. DOI: https://doi.org/10.1108/JD-02-2018-0036
Zhou, X., Yu, X. y Zhang, L. (2020). The Definitions of Information Science in China. En Multidisciplinary Digital Publishing Institute Proceedings, 47(1). DOI: https://doi.org/10.3390/proceedings2020047045
Zins, C. (2007). Conceptions of Information Science. Journal of the American Society for Information Science and Technology, 58(3), 335-350.