Size dependent allocation to vegetative and reproductive organs of the micro-orchid <i>Lankesterella ceracifolia</i> (Spiranthinae)
DOI:
https://doi.org/10.15517/lank.v22i3.53115Palabras clave:
alometría vegetal, asignación, epífita, Cranichideae, historia de vida, estrategia reproductiva, umbral de tamañoResumen
How functional organ traits vary with increasing plant size reveals the strategies of plants to acquire, store and utilize resources that ensure vegetative growth and reproduction. Plant size can influence fitness; thus, the relationships of organ traits should be evaluated together with reproductive allocation, but this is rarely the case. The relationship among plant size, functional organ traits (number and size of roots, leaves and flowers, and scape size), and dry mass partitioning was analyzed intraspecifically using 35 reproductive individuals of the epiphytic, micro-orchid Lankesterella ceracifolia. The relationships between vegetative and reproductive organ traits were evaluated using different regressions models. Size-dependent allocation to reproduction was evaluated through reproductive versus vegetative (RV) regressions for the entire inflorescence and separately for scape and flowers. The four regression models included simple (slope only), linear (slope and intercept), allometric (without intercept), and non-linear (allometric with intercept), were fitted to RV and compared via a log likelihood-ratio test. Preferential allocation to leaves instead of roots influenced how rosette frontal area changed with increasing plant size. Flower dry mass represented 70% of the inflorescence dry mass, an unusual result as scape dry mass generally represents most of the reproductive structure in plants. The allometric model was suitable for the entire inflorescence or only the scape, while the isometric model was best for flowers. Dry mass investment in the scape influenced the final reproductive allometry found for the micro-orchid L. ceracifolia.
Descargas
Citas
Antlfinger, A. E. & Wendel, L. F. (1997). Reproductive effort and floral photosynthesis in Spiranthes cernua (Orchidaceae). American Journal of Botany, 84(6), 769–780. https://doi.org/10.2307/2445813
Barthélémy, D. & Caraglio, Y. (2007). Plant Architecture: A Dynamic, Multilevel and Comprehensive Approach to Plant Form, Structure and Ontogeny. Annals of Botany, 99(3), 375–407.
Benzing, D. H. (1990). Vascular epiphytes: General Biology and related biota. New York: Cambridge University Press.
Bonser, S. P. & Aarssen, L. W. (2009). Interpreting reproductive allometry, individual strategies of allocation explain size-dependent reproduction in plant populations. Perspectives in Plant Ecology, Evolution & Systematics, 11(1), 31–40. https://doi.org/10.1016/j.ppees.2008.10.003
Clay, K. (1993). Size-dependent gender change in green dragon (Arisaema dracontium; Araceae). American Journal of Botany, 80(7), 769–777. https://doi.org/10.1002/j.1537-2197.1993.tb15293.x
Cheplick, G. (2020). Life-history variation in a native perennial grass (Tridens flavus): reproductive allocation, biomass partitioning, and allometry. Plant Ecology, 221(2), 103–115. https://doi.org/10.1007/s11258-019-00996-z
Echarte, L. & Andrade, F. H. (2003). Harvest index stability of Argentinean maize hybrids released between 1965 & 1993. Field Crops Research, 82(1), 1–12. https://doi.org/10.1016/S0378-4290(02)00232-0
Feng J. Q., Zhang F. P., Huang J. L., Hu H. & Zhang S. B. (2021). Allometry between vegetative and reproductive traits in orchids. Frontiers in Plant Science, 13(12), 728843. https://doi.org/10.3389/fpls.2021.728843.
Fritz, A. L. (1990). Deceit pollination of Orchis spitzelii (Orchidaceae) on the Island of Gotland in the Baltic, a suboptimal system. Nordic Journal of Botany, 9(6), 577–587. https://doi.org/10.1111/j.1756-1051.1990.tb00548.x
Guo, H., Weiner, J., Mazer, S. J., Zhao, Z., Du, G. & Li, B. (2012). Reproductive allometry in Pedicularis species changes with elevation. Journal of Ecology, 100(2), 452–458. https://doi.org/10.1111/j.1365-2745.2011.01884.x
Hartgerink, A. P. & Bazzaz, F. A. (1984). Seedling-scale environmental heterogeneity influences individual fitness and population structure. Ecology, 65(1), 198–206. https://doi.org/10.2307/1939471
Kinoshita, E. (1986). Size-sex relationship and sexual dimorphism in Japanese Arisaem (Araceae). Ecological Research, 1(2), 157–171. https://doi.org/10.1007/BF02347018
Kleyer, M. & Minden, V. (2015). Why functional ecology should consider all plant organs: An allocation-based perspective. Basic and Applied Ecology, 16, 1– 9. https://doi.org/10.1016/j.baae.2014.11.002
Klinkhamer, P. G. L., Meelis, E., de Jong, T. J. & Weiner, J. (1992). On the analysis of size-dependent reproductive output in plants. Functional Ecology, 6(3), 308–316. https://doi.org/10.2307/2389522
Lord, J. M. & Westoby, M. (2012). Accessory costs of seed production and the evolution of angiosperms. Evolution, 66(1), 200–210. https://doi.org/10.1111/j.1558-5646.2011.01425.x
Mantovani, A. & Iglesias, R. R. (2009). Size-dependent allocation of biomass to ancillary versus flowers of the inflorescences of the epiphyte Tillandsia stricta Soland (Bromeliaceae). Acta Botanica Brasilica, 23(1), 130–131. https://doi.org/10.1590/S0102-33062009000100016
Mantovani, A., Pereira, T. E. & Mantuano, D. (2017). Allomorphic growth of Epipremnum aureum (Araceae) as characterized by changes in leaf morphophysiology during the transition from ground to canopy. Brazilian Journal of Botany, 40(1), 177–191. https://doi.org/10.1007/s40415-016-0331-6
Mattila, E. & Kuitunen, M. T. (2000). Nutrient versus pollination limitation in Platanthera bifolia and Dactylorhiza incarnata (Orchidaceae). Oikos 89(2), 360–366. https://doi.org/10.1034/j.1600-0706.2000.890217.x
McKendrick, S. L. (1996). The effects of shade on seedlings of Orchis morio and Dactylorhiza fuchsia in chalk and clay soil. New Phytologist, 134(2), 343–352. https://doi.org/10.1111/j.1469-8137.1996.tb04638.x
Meléndez-Ackerman E. J., Ackerman J. D. & Rodríguez-Robles, J. A. (2000). Reproduction in an orchid is resource limited over its lifetime. Biotropica, 32(2), 282–290. https://doi.org/10.1111/j.1744-7429.2000.tb00471.x
Méndez, M. (2001). Sexual mass allocation in species with inflorescences as pollination units, a comparison between Arum italicum & Arisaema (Araceae). American Journal of Botany, 88(10), 1781–1785. https://doi.org/10.2307/3558353
Méndez, M. & Karlsson, P. S. (2004). Between-population variation in size-dependent reproduction and reproductive allocation in Pinguicula vulgaris (Lentibulariaceae) and its environmental correlates. Oikos, 104(1), 59–70. https://doi.org/10.1111/j.0030-1299.2004.12335.x
Niklas K. J. (1994). Plant allometry: the scaling of form and process. Chicago: University of Chicago Press.
Obeso, J. R. (2002). The cost of reproduction in plants. New Phytologist, 155(3), 321–348. https://doi.org/10.1046/j.1469-8137.2002.00477.x
Pereira, G., Herrera, H., Arriagada, C., Cid, H., García, J. L. & Atala, C. (2020). Controlled mycorrhization of the endemic Chilean orchid Chloraea gavilu (Orchidaceae). Plant Biosystems, 155(4), 848-855. DOI: 10.1080/11263504.2020.1801875
van der Pijl, L. & Dodson, C. H. (1966). Orchid flowers: their pollination and evolution. Miami, FL: University of Miami.
Poorter H. & Sack L. (2012). Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Frontiers in Plant Science, 3, 259. https://doi.org/10.3389/fpls.2012.00259
Pridgeon, A. M., Cribb, P. J., Chase, M. W. & Rasmussen, F. N. (2003). Genera Orchidacearum Volume 3, Orchidoideae (Part II) (pp 217–219). Oxford: Oxford University Press Inc.
R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 Retrieved from http://www.R-project.org/
Reekie, E. G. & Bazzaz, F. A. (1987). Reproductive effort in plants. 2. Does carbon reflect the allocation of other resources? American Naturalist, 129(6), 897–906. https://doi.org/10.1086/284682
Rodríguez-Robles, J. A., Meléndez, E. J. & Ackerman, J. D. (1992). Effects of display size, flowering phenology, and nectar availability on effective visitation frequencies in Comparettia falcata (Orchidaceae). American Journal of Botany, 79(9), 1009–1017. https://doi.org/10.2307/2444910
Sakamoto, Y., Ishiguro, M. & Kitagawa, G. (1986). Akaike Information Criterion Statistics. Dordrecht: Kluwer Academic.
Salazar, G. A. & Dressler, R. L. (2011). The leaves got it right again, DNA phylogenetics supports a sister-group relationship between Eurystyles and Lankesterella (Orchidaceae, Spiranthinae). Lankesteriana, 11(3), 337–347.
Scopece G., Schiestl F. P. & Cozzolino S. (2014). Pollen transfer efficiency and its effect on inflorescence size in deceptive pollination strategies. Plant Biology, 17(2), 545–550. https://doi.org/10.1111/plb.12224
Siqueira, C., Pessoa, E, Zanin, A. & Alves, M. (2015). The smallest angraecoid species from the Neotropics: a new Campylocentrum (Orchidaceae) from a brazilian subtropical forest. Systematic Botany, 40 (1), 79–82. http://dx.doi.org/10.1600/036364415x686369
Štípková, Z., Tsiftsis, S. & Kindlmann P. (2021). Distribution of orchids with different rooting systems in the Czech Republic. Plants, 10(4), 632. https://doi.org/10.3390/plants10040632
Sugiyama, S. & Bazzaz, F. A. (1998). Size dependence of reproductive allocation, the influence of resource availability, competition and genetic identity. Functional Ecology, 12(2), 280–288. https://doi.org/10.1046/j.1365-2435.1998.00187.x
Thomson, J. D. (1988). Effects of variation in inflorescence size and floral rewards on the visitation rates of traplining pollinators of Aralia hispida. Evolutionary Ecology, 2(1), 65–76. https://doi.org/10.1007/BF02071589
van Tongerlo E., van Ieperen W., Dieleman J. A. & Marcelis L. F. M. (2021). Vegetative traits can predict flowering quality in Phalaenopsis orchids despite large genotypic variation in response to light and temperature. PLoS One, 16(5), e0251405. doi: 10.1371/journal.pone.0251405
Torices, R. & Méndez, M. (2014). Resource allocation to inflorescence components is highly integrated despite differences between allocation currencies and sites. International Journal of Plant Sciences, 175(6), 713–723. https://doi.org/10.1086/676622
Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. & Garnier, E. (2007). Let the concept of trait be functional. Oikos, 116(5), 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x
Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. (2006). Bivariate line fitting methods for allometry. Biological Review, 81(2), 259–291. https://doi.org/ 10.1017/S1464793106007007
Wesselingh, R. A., Klinkhamer, P. G. L., deJong, T. J. & Boorman, L. A. (1997). Threshold size for flowering in different habitats: effects of size-dependent growth and survival. Ecology, 78(7), 2118–2132. https://doi.org/10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2
Weiner, J., Campbell, L. G., Pino, J. & Echarte, L. (2009). The allometry of reproduction within plant populations. Journal of Ecology, 97(6), 1220–1233. https://doi.org/10.1111/j.1365-2745.2009.01559.x
Wenk, E. H. & Falster D. S. (2015). Quantifying and understanding reproductive allocation schedules in plants. Ecology & Evolution, 5(23), 5521–5538. https://doi.org/10.1002/ece3.1802.
Yukawa, T., Kinoshita, A. & Tanaka, N. (2013). Molecular identification resolves taxonomic confusion in Grammatophyllum speciosum complex (Orchidaceae). Bulletin of the National Museum of Nature and Science, 39(3), 137–145.
Zar, J. H. (1996). Biostatistical Analysis. 3rd ed. New Jersey: Prentice Hall.
Zimmerman, J. K. & Aide, T. M. (1989). Patterns of fruit production in a Neotropical orchid: pollinator vs. resource limitation. American Journal of Botany, 76(1), 67–73.
Zotz, G. (2000). Size dependence in the reproductive allocation of Dimerandra emarginata, an epiphytic orchid. Ecotropica, 6(1), 95–98. https://doi.org/10.1017/S0266467498000534
Zotz, G. (2016). Plants on Plants - The Biology of Vascular Epiphytes. Switzerland: Springer.
Zotz, G., Hietz, P. & Schmidt, G. (2001). Small plants, large plants: the importance of plant size for the physiological ecology of vascular epiphytes. Journal of Experimental Botany, 52(363), 2051–2056. https://doi.org/10.1093/jexbot/52.363.2051
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Jardín Botánico Lankester, Universidad de Costa Rica
Esta obra está bajo una licencia internacional Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0.
Conforme con las Políticas de Acceso Abierto promovidas por la Universidad de Costa Rica, los derechos de autor de todos los artículos publicados en Lankesteriana se encuentran bajo una licencia Creative Commons y pueden ser descargados gratuitamente. Los derechos de autor y de publicación pertenecen a la revista bajo la licencia CC BY-NC-ND 3.0 CR.
Before the publication of the materials submitted by the author(s) in LANKESTERIANA, the author(s) hereby assign all rights in the article to the Lankester Botanical Garden.