Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud ISSN Impreso: 1409-0724 ISSN electrónico: 1659-4436

OAI: https://revistas.ucr.ac.cr/index.php/pem/oai
Kinematic analysis and bilateral differences in pedaling technique of professional cyclists
PDF_ES (Español (España))
HTML_ES (Español (España))
XML_ES (Español (España))

Keywords

Cycling
pedaling kinematics
positioning
biomechanics
Ciclismo
cinemática del pedaleo
posición
biomecánica
ciclismo
cinemática de pedalada
posição
biomecânica.

How to Cite

Yanci Irigoyen, J. (2015). Kinematic analysis and bilateral differences in pedaling technique of professional cyclists. Pensar En Movimiento: Revista De Ciencias Del Ejercicio Y La Salud, 13(2), 1–12. https://doi.org/10.15517/pensarmov.v13i2.19749

Abstract

The objectives of this study were to describe the maximal angulations of knee and ankle in the flexions and extensions in pedaling performed by professional cyclists and to compare the differences in these angulations between the right and left leg. Thirteen cyclists, who all belonged to a professional team which regularly competed in the “Vuelta Ciclista a España”, took part in this study. Measurements were taken of the length of the crank arms, height and saddle height of the cyclists’ bicycles. A 2D kinematic analysis was also performed of their pedaling to study the angulations of knee and ankle. No significant differences were found between the right and the left leg with regard to the angulations of flexion or extension of the knees or the flexion of the ankles. However, contrary to other studies, differences were found in the ankle angulation of extension (p < 0.05, difference between means = 14.53%, d = 0.37, moderate) between the two legs. In future research it would be interesting to complement the kinematic analysis with a kinetic study to observe if the differences in the angulations are accompanied by differences in the force applied by each leg.
https://doi.org/10.15517/pensarmov.v13i2.19749
PDF_ES (Español (España))
HTML_ES (Español (España))
XML_ES (Español (España))

References

Atkinson, G., & Nevill, A. M. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Medicine, 26(4), 217-238. Recuperado de http://dx.doi.org/10.2165/00007256-199826040-00002

Bini, R.; Hume, P. A., & Croft, J. L. (2011). Effects of bicycle saddle height on knee injury risk and cycling performance. Sports Medicine, 41(6), 463-76. Recuperado de http://dx.doi.org/10.2165/11588740-000000000-00000

Bini, R. R., & Hume, P. A. (2014). Assessment of bilateral asymmetry in cycling using a commercial instrumented crank system and instrumented pedals. International Journal of Sports Physiology and Performance, 9(5), 876-81. Recuperado de http://dx.doi.org/10.1123/ijspp.2013-0494

Bini, R. R., Hume, P. A., & Kilding A. E. (2014) Saddle height effects on pedal forces, joint mechanical work and kinematics of cyclists and triathletes. European Journal of Sport Science, 14(1), 44-52. Recuperado de http://dx.doi.org/10.1080/17461391.2012.725105

Burke, E. R., & Pruitt, A.L. (2003). Body positioning for cycling. In: Burke ER, editor, High-tech cycling (69-92) (2nd ed). Recuperado de https://books.google.co.cr/books/about/High_tech_Cycling.html?id=msdT4iQ50cgC&hl=es-419

Carpes, F. P.; Rossato, M.; Faria, I. E., & Mota, C. B. (2007). Bilateral pedaling asymmetry during a simulated 40-km cycling time-trial. Journal of Sports Medicine and Physical Fitness, 47(1), 51-57. Recuperado de http://www.minervamedica.it/en/journals/sports-med-physical-fitness/article.php?cod=R40Y2007N01A0051

Carpes, F. P.; Mota, C. B., & Faria, I. E. (2010). On the bilateral asymmetry during running and cycling - a review considering leg preference. Physical Therapy in Sport, 11(4), 136-42. doi: 10.1016/j.ptsp.2010.06.005

Carpes, F. P., Diefenthaeler, F., Bini, R. R., Stefanyshyn, D. J., Faria, I. E., & Mota, C. B. (2011). Influence of leg preference on bilateral muscle activation during cycling. Journal of Sports Science, 29(2), 151-159. doi:10.1080/02640414.2010.526625

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Recuperado de https://books.google.co.cr/books/about/Statistical_Power_Analysis_for_the_Behav.html?id=Tl0N2lRAO9oC&redir_esc=y

Daly, D. J., & Cavanagh, P. R. (1976). Asymmetry in bicycle ergometer pedaling. Medicine and Science in Sports and Exercise, 8(3), 204-208. Recuperado de http://journals.lww.com/acsm-msse/Abstract/1976/00830/Asymmetry_in_bicycle_ergometer_pedalling_.13.aspx

Edeline, O., Polin, D., Tourny-Chollet, C. & Weber, J. (2004) Effect of workload on bilateral pedalling kinematics in non-trained cyclists. Journal of Human Movement Studies, 46, 493-51.

Faria, I. (1992). Energy expenditure, aerodynamics and medical problems in cycling. Sports Medicine, 14(1), 43-63. Recuperado de http://dx.doi.org/10.2165/00007256-199214010-00004

Faria, E.; Parker, D. L., & Faria, I. E. (2005). The science of cycling. Factor affecting performance, part 2. Sports Medicine, 35(4), 313–337. Recuperado de http://dx.doi.org/10.2165/00007256-200535040-00003

Ferrer-Roca, V., Roig, A., Galilea, P., & García-López, J. (2012). Influence of saddle height on lower limb kinematics in well-trained cyclists: static vs. dynamic evaluation in bike fitting. Journal of Strength and Conditioning Research, 26(11), 3025-3029. Recuperado de http://journals.lww.com/nsca-jscr/Abstract/2012/11000/Influence_of_Saddle_Height_on_Lower_Limb.16.aspx

Ferrer-Roca, V., Bescós, R., Roig, A., Galilea, P., Valero, O., & García-López, J. (2014). Acute effects of small changes in bicycle saddle height on gross efficiency and lower limb kinematics. Journal of Strength and Conditioning Research, 28(3), 784–791. Recuperado de http://journals.lww.com/nsca-jscr/Abstract/2014/03000/Acute_Effects_of_Small_Changes_in_Bicycle_Saddle.25.aspx

García-López, J.; Rodrıguez-Marroyo, J. A.; Juneau, C. E.; Peleteiro, J.; Martınez, A. C., & Villa, J.G. (2008). Reference values and improve- ment of aerodynamic drag in professional cyclists. Journal of Sports Science, 26(3), 277–286. Recuperado de: http://dx.doi.org/10.1080/02640410701501697

García-López, J.; Díez-Leal, S.; Rodríguez-Marroyo, J. A.; Larrazabal, J.; De Galdeano, I. G., y Villa, J. G. (2009). Eficiencia mecánica de pedaleo en ciclistas de diferente nivel competitivo. Biomecánica: Órgano de la sociedad Ibérica de Biomecánica y Biomateriales, 17(2), 9-20. Recuperado de https://upcommons.upc.edu/handle/2099/11973

Heil, D. P., Derrick, T. R., & Whittlesey, S. (1997). The relationship between preferred and optimal positioning during submaximal cycle ergometry. European Journal of Applied Physiology and Occupational Physiology, 75(2), 160–165. Recuperado de http://dx.doi.org/10.1007/s004210050141

Hull, M. L., & González, H. K. (1988). Bivariate optimization of pedaling rate and crank arm length in cycling. Journal Biomechanics, 21(10), 839-849. Recuperado de http://dx.doi.org/10.1016/0021-9290(88)90016-4

Korff, T.; Fletcher, G.; Brown, D., & Romer, L. M. (2011). Effect of "Pose" cycling on efficiency and pedaling mechanics. European Journal of Applied Physiology, 111(6), 1177-86. Recuperado de http://dx.doi.org/10.1007/s00421-010-1745-7

Lucia, A.; Hoyos, J., & Chicharro, J. L. (2001a). Physiology of professional road cycling. Sports Medicine, 31(5), 325-37. Recuperado de http://dx.doi.org/10.2165/00007256-200131050-00004

Lucia, A.; Hoyos, J., & Chicharro, J. L. (2001b). Preferred pedalling cadence in professional cycling. Medicine and Science in Sports and Exercise, 33(8), 1361–1366. Recuperado de http://journals.lww.com/acsm-msse/Fulltext/2001/08000/Preferred_pedalling_cadence_in_professional.18.aspx

Lucia, A.; San Juan, A. F.; Montilla, M.; Cañete, S.; Santalla, A.; Earnest, C., & Pérez, M. (2004). In professional road cyclists, low pedaling cadences are less efficient. Medicine and Science in Sports and Exercise, 36(6), 1048–1054. Recuperado de http://journals.lww.com/acsm-msse/Fulltext/2004/06000/In_Professional_Road_Cyclists,_Low_Pedaling.19.aspx

Passfield, L., & Doust J. H. (2000). Changes in cycling efficiency and performance after endurance exercise. Medicine and Science in Sports and Exercise, 32(11), 1935–1941, 2000. Recuperado de http://journals.lww.com/acsm-msse/Fulltext/2000/11000/Changes_in_cycling_efficiency_and_performance.18.aspx

Peveler, W. W. (2008). Effects of saddle height on economy in cycling. Journal of Strength and Conditioning Research, 22(4), 1355-1359. doi: 10.1519/JSC.0b013e318173dac6

Price, D., & Donne, B. (1997). Effect of variation in seat tube angle at different seat heights on submaximal cycling performance in man. Journal of Sports Science, 15(4), 395-402. doi:10.1080/026404197367182

Rodríguez-Marroyo, J. A., García-López, J., Juneau, C. E., & Villa, J. G. (2009). Workload demands in professional multi-stage cycling races of varying duration. British Journal of Sports Medicine, 43(3), 180-185. doi:10.1136/bjsm.2007.043125

Sargeant, A. J., & Davies, C. T. M. (1977). Forces applied to the cranks of a bicycle ergometer during one and two-legged pedaling. Journal of Applied Physiology, 42(4), 514-518. Recuperado de http://jap.physiology.org/content/42/4/514

Savelberg, H.; Van de Port, I., & Willems, P. (2003). Body configuration in cycling affects muscle recruitment and movement pattern. Journal Applied Biomechanics, 19(4), 310-324. Recuperado de http://journals.humankinetics.com/jab-back-issues/jabvolume19issue4november/bodyconfigurationincyclingaffectsmusclerecruitmentandmovementpattern

Yanci, J., & Los Arcos, A. (2014). Differences in muscle strength and leg asymmetries in elite runners and cyclists. International Sport Medicine Journal, 15(3), 265-277. Recuperado de http://issuu.com/aristi/docs/differences_in_muscle_strength_and_/1

Comments

Downloads

Download data is not yet available.