Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud ISSN Impreso: 1409-0724 ISSN electrónico: 1659-4436

OAI: https://revistas.ucr.ac.cr/index.php/pem/oai
The effects of sprint interval training and detraining on aerobic fitness in young adults
JustBaked_EN
PDF_EN

How to Cite

Aslankeser, Z., & Altinsoy, C. (2024). The effects of sprint interval training and detraining on aerobic fitness in young adults. Pensar En Movimiento: Revista De Ciencias Del Ejercicio Y La Salud, 22(1), e58582. https://doi.org/10.15517/pensarmov.v22i1.58582

Abstract

Sprint interval training (SIT) has been known to improve aerobic performance as well as health and fitness markers in non-athletic population. However, there's not enough information about performance when SIT is stopped. The aim of this study was to investigate the alterations in the detraining process of the evolution of adaptive physical fitness caused by short-term sprint interval training. The general design of the study was classified as before SIT, training period, after SIT and detraining period measurements. The subjects (n=26) completed the baseline measurements of the 20-m shuttle run test and then were randomized as training and control groups. The control group continued their daily routine and the training group ran SIT for 4 weeks. The 20-m shuttle run test was applied before and after training, and in the 4th and 8th detraining weeks. After the training period, aerobic performance increased in the training group (p<0.05). In addition, aerobic performance increases were maintained for the 4 weeks of detraining (p<0.05). But the performance increments disappeared in the 8th detraining week (p>0.05). Taking a break from the exercise program for more than 4 weeks in healthy young individuals may cause the positive effects of SIT on maximum oxygen uptake (VO2max) to disappear. SIT participants should not take a break from exercise for more than 4 weeks if they are to maintain aerobic gain.

https://doi.org/10.15517/pensarmov.v22i1.58582
JustBaked_EN
PDF_EN

References

Aslankeser, Z., & Balci, S. S. (2017). Substrate oxidation during incremental exercise in young women: the effects of 2-week high intensity interval training. Medicina dello Sport, 70(2), 137-149. http://dx.doi.org/10.23736/S0025-7826.17.03010-1

Astorino, T. A., Edmunds, R. M., Clark, A., King, L., Gallant, R. A., Namm, S., Fischar, A., & Wood, K. M. (2017). High-intensity interval training increases cardiac output and VO2max. Med Sci Sports Exerc, 49(2), 265-273. https://doi.org/10.1249/mss.0000000000001099

Boullosa, D., Dragutinovic, B., Feuerbacher, J. F., Benítez‐Flores, S., Coyle, E. F., & Schumann, M. (2022). Effects of short sprint interval training on aerobic and anaerobic indices: A systematic review and meta‐analysis. Scandinavian Journal of Medicine & Science in Sports, 32(5), 810-820. https://doi.org/10.1111/sms.14133

Burgomaster, K. A., Cermak, N. M., Phillips, S. M., Benton, C. R., Bonen, A., & Gibala, M. J. (2007). Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292(5), R1970-R1976. https://doi.org/10.1152/ajpregu.00503.2006

Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., MacDonald, M. J., McGee, S. L., & Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. The Journal of physiology, 586(1), 151-160. https://doi.org/10.1113%2Fjphysiol.2007.142109

Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J., Bradwell, S. N., & Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of applied physiology, 98(6), 1985-1990. https://doi.org/10.1152/japplphysiol.01095.2004

Clemente, F. M., Soylu, Y., Arslan, E., Kilit, B., Garrett, J., van den Hoek, D., Badicu, G., & Silva, A. F. (2022). Can high-intensity interval training and small-sided games be effective for improving physical fitness after detraining? A parallel study design in youth male soccer players. PeerJ, 10, e13514. https://doi.org/10.7717/peerj.13514

Chung, J. W., Lee, O., & Lee, K. H. (2023). Estimation of maximal oxygen consumption using the 20 m shuttle run test in Korean adults aged 19-64 years. Science & Sports, 38(1), 68-74. https://doi.org/10.1016/j.scispo.2021.10.005

Daussin, F. N., Zoll, J., Dufour, S. P., Ponsot, E., Lonsdorfer-Wolf, E., Doutreleau, S., Mettauer, B., Piquard, F., Geny, B., & Richard, R. (2008). Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 295(1), R264-R272. https://doi.org/10.1152/ajpregu.00875.2007

Durnin, J. V., & Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. British journal of nutrition, 32(1), 77-97. https://doi.org/10.1079/bjn19740060

Flouris, A. D., Metsios, G. S., & Koutedakis, Y. (2005). Enhancing the efficacy of the 20 m multistage shuttle run test. British journal of sports medicine, 39(3), 166-170. https://doi.org/10.1136%2Fbjsm.2004.012500

Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., Nieman, B.A., Swain, D. P. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine and science in sports and exercise, 43(7), 1334–1359. https://doi.org/10.1249/MSS.0b013e318213fefb

Gibala, M. J., Little, J. P., Van Essen, M., Wilkin, G. P., Burgomaster, K. A., Safdar, A., Raha, S., & Tarnopolsky, M. A. (2006). Short‐term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. The Journal of physiology, 575(3), 901-911. https://doi.org/10.1113%2Fjphysiol.2006.112094

Gillen, J. B., & Gibala, M. J. (2014). Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Applied physiology, nutrition, and metabolism, 39(3), 409-412. https://doi.org/10.1139/apnm-2013-0187

Grant, S., Corbett, K., Amjad, A. M., Wilson, J., & Aitchison, T. (1995). A comparison of methods of predicting maximum oxygen uptake. British journal of sports medicine, 29(3), 147-152. https://doi.org/10.1136/bjsm.29.3.147

Hood, M. S., Little, J. P., Tarnopolsky, M. A., Myslik, F., & Gibala, M. J. (2011). Low-volume interval training improves muscle oxidative capacity in sedentary adults. Medicine and science in sports and exercise, 43(10), 1849-1856. https://doi.org/10.1249/mss.0b013e3182199834

Joo, C. H. (2018). The effects of short term detraining and retraining on physical fitness in elite soccer players. PloS one, 13(5), e0196212. https://doi.org/10.1371/journal.pone.0196212

Macpherson, R., Hazell, T. J., Olver, T. D., Paterson, D. H., & Lemon, P. (2011). Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exerc, 43(1), 115-122. https://doi.org/10.1249/mss.0b013e3181e5eacd

Matsuzaka, A., Takahashi, Y., Yamazoe, M., Kumakura, N., Ikeda, A., Wilk, B., & Bar-Or, O. (2004). Validity of the multistage 20-m shuttle-run test for Japanese children, adolescents, and adults. Pediatric exercise science, 16(2), 113-125. https://doi.org/10.1123/pes.16.2.113

Mendez-Cornejo, J., Gomez-Campos, R., Andruske, C. L., Sulla-Torres, J., Urra-Albornoz, C., Urzua-Alul, L., & Cossio-Bolanos, M. (2020). Maximum Oxygen Consumption: Validity of the Run Test of 20 Meters and Proposal of Equations for Prediction in Young People. Journal of Exercise Physiology Online, 23(1). https://www.asep.org/asep/asep/JEPonlineFEBRUARY2020_Marco%20Cossio-Bolanos.pdf

Mujika, I., & Padilla, S. (2000). Detraining: Loss of training-induced physiological and performance adaptations. Part II: Long term insufficient training stimulus. Sports Medicine, 30(3), 145-154. https://doi.org/10.2165/00007256-200030030-00001

Rodas, G., Ventura, J. L., Cadefau, J. A., Cussó, R., & Parra, J. (2000). A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. European journal of applied physiology, 82, 480-486. https://doi.org/10.1007/s004210000223

Sökmen, B., Witchey, R. L., Adams, G. M., & Beam, W. C. (2018). Effects of sprint interval training with active recovery vs. endurance training on aerobic and anaerobic power, muscular strength, and sprint ability. The Journal of Strength & Conditioning Research, 32(3), 624-631.

Tomlin, D., & Wenger, H. (2002). The relationships between aerobic fitness, power maintenance and oxygen consumption during intense intermittent exercise. Journal of science and medicine in sport, 5(3), 194-203. https://doi.org/10.1016/s1440-2440(02)80004-4

Vollaard, N., Metcalfe, R., & Williams, S. (2017). Effect of number of sprints in a SIT session on change in VO2max: a meta-analysis. Medicine and science in sports and exercise, 49(6), 1147-1156. https://doi.org/10.1249/mss.0000000000001204

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2024 Zubeyde Aslankeser, Cebrail Altinsoy

Downloads

Download data is not yet available.