Resumo
Esta revisión tiene como objetivo presentar avances recientes en la comprensión de los mecanismos fisiológicos de la termoregulación en mamíferos. Los termoreceptores cutáneos y profundos son neuronas polimodales que detectan estímulos dolorosos, mecánicos y químicos, además de los térmicos. La información detectada por los receptores es enviada por vías aferentes hasta la médula espinal, donde la información térmica es filtrada y subsecuentemente enviada a puntos de relevo en el mesencéfalo y finalmente al centro integrador en el hipotálamo. El centro integrador hipotalámico organiza su respuesta a los estímulos térmicos a través de vías eferentes con relevos en el tallo cerebral y la médula espinal. Estas vías nerviosas alcanzan finalmente a los órganos efectores, que son capaces de conservar o disipar la energía térmica, de manera que la temperatura corporal permanece constante. En la actualidad, cada vez existe más evidencia que sugiere un alto grado de integración fisiológica entre la termorregulación, el balance energético y la actividad metabólica, lo que hace pensar en la manipulación del arco reflejo termoregulatorio como una estrategia para tratar problemas metabólicos o influenciar la composición corporal. Los recientes descubrimientos también han traído consigo nuevos interrogantes que se exponen en la parte final de esta revisión.
Referências
Barret, K., Barman, S., Boitano, S., & Brooks, H. (2010). Ganong. Fisiología Médica (23a ed.). México D.F.: McGraw-Hill. Recuperado de: http://mcgraw-hill.com.mx/cgi-bin/book.pl?isbn=00000038MX&division=mexh
Belmonte, C., & Viana, F. (2008). Molecular and cellular limits to somatosensory specificity. Molecular Pain, 4, 14. Recuperado de: http://www.molecularpain.com/content/4/1/14 doi: 10.1186/1744-8069-4-14.
Bharate, S. S., & Bharate, S. B. (2012). Modulation of thermoreceptor TRPM8 by cooling compounds. ACS Chemical Neuroscience, 3(4), 248-267. Recuperado de: http://pubs.acs.org/doi/abs/10.1021/cn300006u doi: 10.1021/cn300006u
Boron, W., & Boulpaep, E. (2011). Medical Physiology (2da ed.). Philadelphia: Saunders. Recuperado de: http://store.elsevier.com/Medical-Physiology-2e-Updated-Edition-E-Book/Walter-Boron/isbn-9781455711819/
Chalmers, S., Esterman, A., Eston, R., Bowering, K. J., & Norton, K. (2014). Short-Term Heat Acclimation Training Improves Physical Performance: A Systematic Review, and Exploration of Physiological Adaptations and Application for Team Sports. Sports Medicine. Recuperado de: http://link.springer.com/article/10.1007/s40279-014-0178-6 doi: 10.1007/s40279-014-0178-6
Clapham, J. C. (July, 2012). Central control of thermogenesis. Neuropharmacology, 63(1), 111-123. doi: http://dx.doi.org/10.1016/j.neuropharm.2011.10.014
Clarac, F. (January, 2008). Some historical reflections on the neural control of locomotion. Brain Research Reviews, 57(1), 13-21. Recuperado de: http://www.sciencedirect.com/science/article/pii/S0165017307001324
doi: 10.1016/j.brainresrev.2007.07.015
Collins, S. (March, 2014). A heart-adipose tissue connection in the regulation of energy metabolism. Nature Reviews Endocrinology, 10(3), 157-163. Recuperado de: http://www.nature.com/nrendo/journal/v10/n3/full/nrendo.2013.234.html
doi: 10.1038/nrendo.2013.234
Cypess, A. M., & Kahn, C. R. (August, 2010). The role and importance of brown adipose tissue in energy homeostasis. Current Opinion in Pediatrics, 22(4), 478-484. Recuperado de: http://journals.lww.com/co-pediatrics/Abstract/2010/08000/The_role_and_importance_of_brown_adipose_tissue_in.16.aspx doi: 10.1097/MOP.0b013e32833a8d6e
Cypess, A. M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A. B., . . . Kahn, C. R. (2009). Identification and importance of brown adipose tissue in adult humans. New England Journal of Medicine, 360, 1509-1517. Recuperado de: http://www.nejm.org/doi/full/10.1056/NEJMoa0810780
doi: 10.1056/NEJMoa0810780
Dhaka, A., Viswanath, V., & Patapoutian, A. (2006). Trp ion channels and temperature sensation. Annual Review of Neuroscience, 29, 135-161. Recuperado de: http://www.annualreviews.org/doi/abs/10.1146/annurev.neuro.29.051605.112958 doi: 10.1146/annurev.neuro.29.051605.112958
Fahlke, C., Linke, W., Raßler, B., & Wiesner, R. (2008). Taschenatlas Physiologie. München: Urban & Fischer. Recuperado de: http://shop.elsevier.de/medizinstudenten/taschenatlas-physiologie-buch/9783437419171/
Flouris, A. D. (January, 2011). Functional architecture of behavioural thermoregulation. European Journal of Applied Physiology, 111(1), 1-8. Recuperado de: http://link.springer.com/article/10.1007%2Fs00421-010-1602-8
doi: 10.1007/s00421-010-1602-8
González-Alonso, J. (March, 2012). Human thermoregulation and the cardiovascular system. Experimental Physiology, 97(3), 340-346. Recuperado de: http://onlinelibrary.wiley.com/doi/10.1113/expphysiol.2011.058701/abstract
doi: 10.1113/expphysiol.2011.058701
Harker, M. (April, 2013). Psychological sweating: a systematic review focused on aetiology and cutaneous response. Skin Pharmacology and Physiology, 26(2), 92-100. Recuperado de: http://www.karger.com/Article/FullText/346930
doi: 10.1159/000346930
Harrold, J. A., Dovey, T. M., Blundell, J. E., & Halford, J. C. (July, 2012). CNS regulation of appetite. Neuropharmacology, 63(1), 3-17. Recuperado de: http://www.sciencedirect.com/science/article/pii/S0028390812000196
doi: 10.1016/j.neuropharm.2012.01.007
Hofmann, T., Elbelt, U., & Stengel, A. (April, 2014). Irisin as a muscle-derived hormone stimulating thermogenesis - A critical update. Peptides, 54C, 89-100. Recuperado de: http://www.sciencedirect.com/science/article/pii/S0196978114000199
doi: 10.1016/j.peptides.2014.01.016
Johnson, J. M., & Kellogg, D. L. (2010). Local thermal control of the human cutaneous circulation. Journal of Applied Physiology, 109(4), 1229-1238. Recuperado de: http://jap.physiology.org/content/109/4/1229 doi: 10.1152/japplphysiol.00407.2010
Journigan, V. B., & Zaveri, N. T. (March, 2013). TRPM8 ion channel ligands for new therapeutic applications and as probes to study menthol pharmacology. Life Sciences, 92(8-9), 425-437. Recuperado de: http://www.sciencedirect.com/science/article/pii/S0024320512006601
doi: 10.1016/j.lfs.2012.10.032
Kellogg, D. L., Zhao, J. L., Wu, Y., & Johnson, J. M. (2012). Nitric oxide and receptors for VIP and PACAP in cutaneous active vasodilation during heat stress in humans. Journal of Applied Physiology, 113(10), 1512-1518. Recuperado de: http://jap.physiology.org/content/early/2012/09/04/japplphysiol.00859.2012
doi: 10.1152/japplphysiol.00859.2012
Konishi, M., Nagashima, K., Asano, K., & Kanosue, K. (2003). Attenuation of metabolic heat production and cold-escape/warm-seeking behaviour during a cold exposure following systemic salt loading in rats. The Journal of Physiology, 551(Pt 2), 713-720. Recuperado de: http://jp.physoc.org/content/551/2/713.full
doi: 10.1113/jphysiol.2003.040592
Konishi, M., Nagashima, K., & Kanosue, K. (2002). Systemic salt loading decreases body temperature and increases heat-escape/cold-seeking behaviour via the central AT1 and V1 receptors in rats. The Journal of Physiology, 545(Pt 1), 289-296. Recuperado de: http://jp.physoc.org/content/545/1/289
doi: http://dx.doi.org/10.1113/jphysiol.2002.027029
Kummitha, C. M., Kalhan, S. C., Saidel, G. M., & Lai, N. (September, 2014). Relating tissue/organ energy expenditure to metabolic fluxes in mouse and human: experimental data integrated with mathematical modeling. Physiological Reports, 2(9). Recuperado de: http://onlinelibrary.wiley.com/doi/10.14814/phy2.12159/abstract
doi: 10.14814/phy2.12159
Lin, C. H., Tokizawa, K., Nakamura, M., Uchida, Y., Mori, H., & Nagashima, K. (2012). Hyperosmolality in the plasma modulates behavioral thermoregulation in mice: the quantitative and multilateral assessment using a new experimental system. Physiology and Behavior, 105(2), 536-543. Recuperado de: http://www.sciencedirect.com/science/article/pii/S0031938411004422
doi: 10.1016/j.physbeh.2011.09.006
Lumpkin, E. A., & Caterina, M. J. (2007). Mechanisms of sensory transduction in the skin. Nature, 445(7130), 858-865. Recuperado de: http://www.nature.com/nature/journal/v445/n7130/full/nature05662.html
doi: 10.1038/nature05662
Lynn, A. G., Gagnon, D., Binder, K., Boushel, R. C., & Kenny, G. P. (2012). Divergent roles of plasma osmolality and the baroreflex on sweating and skin blood flow. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 302(5), R634-642. Recuperado de: http://ajpregu.physiology.org/content/early/2011/12/09/ajpregu.00411.2011
doi: 10.1152/ajpregu.00411.2011
López-Dávila, A. (2014). Nota técnica: el uso de una camiseta adicional aumenta significativamente el grado de deshidratación durante la práctica del fútbol. Pensar en Movimiento, 2(12), 1-5. doi: http://dx.doi.org/10.15517/pensarmov.v12i2.15602
López, M., Alvarez, C. V., Nogueiras, R., & Diéguez, C. (July, 2013). Energy balance regulation by thyroid hormones at central level. Trends in Molecular Medicine, 19(7), 418-427. Recuperado de: http://www.sciencedirect.com/science/article/pii/S1471491413000725
doi: 10.1016/j.molmed.2013.04.004
Meriney, S. D., & Dittrich, M. (2013). Organization and function of transmitter release sites at the neuromuscular junction. Journal of Physiology, 591(Pt 13), 3159-3165. Recuperado de: http://jp.physoc.org/content/591/13/3159.full?sid=a93bce39-e6ef-4b0f-88e0-cf5f67048d63 doi: 10.1113/jphysiol.2012.248625
Morrison, S. F., Madden, C. J., & Tupone, D. (2014). Central Neural Regulation of Brown Adipose Tissue Thermogenesis and Energy Expenditure. Cell Metabolism, 19(5), 741-756. Recuperado de: http://www.sciencedirect.com/science/article/pii/S1550413114000631 doi: 10.1016/j.cmet.2014.02.007
Morrison, S. F., & Nakamura, K. (2011). Central neural pathways for thermoregulation. Frontiers in Bioscience, 16, 74-104. doi: http://dx.doi.org/10.2741/3677
Morrison, S. F., Nakamura, K., & Madden, C. J. (2008). Central control of thermogenesis in mammals. Experimental Physiology, 93(7), 773-797. Recuperado de: http://ep.physoc.org/content/93/7/773.abstract doi: 10.1113/expphysiol.2007.041848
Nagashima, K. (2006). Central mechanisms for thermoregulation in a hot environment. Industrial Health, 44(3), 359-367. doi: http://dx.doi.org/10.2486/indhealth.44.359
Nagashima, K., Nakai, S., Konishi, M., Su, L., & Kanosue, K. (2001). Increased heat-escape/cold-seeking behavior following hypertonic saline injection in rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 280, R1031-1036. Recuperado de: http://ajpregu.physiology.org/content/ajpregu/280/4/R1031.full.pdf
Nakamura, K. (2011). Central circuitries for body temperature regulation and fever. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 301(5), R1207-1228. Recuperado de: http://ajpregu.physiology.org/content/301/5/R1207
doi: 10.1152/ajpregu.00109.2011
Perino, A., Ghigo, A., Scott, J. D., & Hirsch, E. (2012). Anchoring proteins as regulators of signaling pathways. Circulation Research, 111(4), 482-492. Recuperado de: http://circres.ahajournals.org/content/111/4/482.abstract?related-urls=yes&legid=circresaha;111/4/482 doi: 10.1161/CIRCRESAHA.111.262899
Purves, D., Augustine, J., Fitzpatrick, D., Hall, W., LaMantia, A., & White, L. (2012). Neuroscience (5ta ed.). Estados Unidos: Sinauer Associates, Inc. Recuperado de: http://www.sinauer.com/neuroscience-621.html
Rao, R. R., Long, J. Z., White, J. P., Svensson, K. J., Lou, J., Lokurkar, I., . . . Spiegelman, B. M. (June, 2014). Meteorin-like Is a Hormone that Regulates Immune-Adipose Interactions to Increase Beige Fat Thermogenesis. Cell, 157(6), 1279-1291. doi: http://dx.doi.org/10.1016/j.cell.2014.03.065
Romanovsky, A. A., Almeida, M. C., Garami, A., Steiner, A. A., Norman, M. H., Morrison, S. F., . . . Nucci, T. B. (2009). The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacological Reviews, 61(3), 228-261. Recuperado de: http://pharmrev.aspetjournals.org/content/61/3/228.full
doi: 10.1124/pr.109.001263
Schepers, R. J., & Ringkamp, M. (February, 2010). Thermoreceptors and thermosensitive afferents. Neuroscience and Biobehavioral Reviews, 34(2), 177-184. Recuperado de: http://www.sciencedirect.com/science/article/pii/S0149763409001559 doi: 10.1016/j.neubiorev.2009.10.003
Schlader, Z. J., Simmons, S. E., Stannard, S. R., & Mündel, T. (2011). The independent roles of temperature and thermal perception in the control of human thermoregulatory behavior. Physiology and Behavior, 103(2), 217-224. Recuperado de: http://www.sciencedirect.com/science/article/pii/S0031938411000539
doi: 10.1016/j.physbeh.2011.02.002
Schlader, Z. J., Stannard, S. R., & Mündel, T. (2010). Human thermoregulatory behavior during rest and exercise - a prospective review. Physiology and Behavior, 99(3), 269-275. Recuperado de: http://www.sciencedirect.com/science/article/pii/S0031938409003898
doi: 10.1016/j.physbeh.2009.12.003
Shibasaki, M., & Crandall, C. G. (January, 2010). Mechanisms and controllers of eccrine sweating in humans. Frontiers in Bioscience, 2, 685-696. doi: http://dx.doi.org/10.2741/s94
Shibasaki, M., Wilson, T. E., & Crandall, C. G. (2006). Neural control and mechanisms of eccrine sweating during heat stress and exercise. Journal of Applied Physiology, 100, 1692-1701. Recuperado de: http://jap.physiology.org/content/jap/100/5/1692.full.pdf
doi: 10.1152/japplphysiol.01124.2005
Simmons, G. H., Wong, B. J., Holowatz, L. A., & Kenney, W. L. (2011). Changes in the control of skin blood flow with exercise training: where do cutaneous vascular adaptations fit in? Experimental Physiology, 96(9), 822-828. Recuperado de: http://ep.physoc.org/content/96/9/822.full doi: 10.1113/expphysiol.2010.056176
Tanaka, M., Ootsuka, Y., McKinley, M. J., & McAllen, R. M. (2007). Independent vasomotor control of rat tail and proximal hairy skin. The Journal of Physiology, 582(Pt 1), 421-433. Recuperado de: http://jp.physoc.org/content/582/1/421.full
doi: 10.1113/jphysiol.2007.131292
Terrien, J., Perret, M., & Aujard, F. (2011). Behavioral thermoregulation in mammals: a review. Frontiers in Bioscience, 16, 1428-1444. doi: http://dx.doi.org/10.2741/3797
Tokizawa, K., Yasuhara, S., Nakamura, M., Uchida, Y., Crawshaw, L. I., & Nagashima, K. (June, 2010). Mild hypohydration induced by exercise in the heat attenuates autonomic thermoregulatory responses to the heat, but not thermal pleasantness in humans. Physiology and Behavior, 100(4), 340-345. Recuperado de: http://www.sciencedirect.com/science/article/pii/S0031938410001149 doi: 10.1016/j.physbeh.2010.03.008
Tupone, D., Madden, C. J., & Morrison, S. F. (2014). Autonomic regulation of brown adipose tissue thermogenesis in health and disease: potential clinical applications for altering BAT thermogenesis. Frontiers in Neuroscience, 8, 14. Recuperado de: http://journal.frontiersin.org/Journal/10.3389/fnins.2014.00014/abstract
doi: 10.3389/fnins.2014.00014
Vinik, A. I., Nevoret, M., Casellini, C., & Parson, H. (2013). Neurovascular function and sudorimetry in health and disease. Current Diabetes Reports, 13(4), 517-532. Recuperado de: http://link.springer.com/article/10.1007%2Fs11892-013-0392-x
doi: 10.1007/s11892-013-0392-x
Witjas-Paalberends, E. R., Güçlü, A., Germans, T., Knaapen, P., Harms, H. J., Vermeer, A. M., . . . van der Velden, J. (2014). Gene-specific increase in the energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations. Cardiovascular Research, 103(2), 248-257. doi: http://dx.doi.org/10.1093/cvr/cvu127
Wu, J., Cohen, P., & Spiegelman, B. M. (2013). Adaptive thermogenesis in adipocytes: is beige the new brown? Genes and Development, 27, 234-250. Recuperado de: http://genesdev.cshlp.org/content/27/3/234?cited-by=yes&legid=genesdev;27/3/234 doi: 10.1101/gad.211649.112