Abstract
In Costa Rica, poverty and inequality indicators are traditionally reported on an annual basis, limiting their utility for timely analysis and responsive policymaking. This study develops and applies a novel methodology to generate monthly estimates of household poverty rates and Gini coefficients from June 2020 to November 2023. Results indicate statistically insignificant differences between the proposed estimates and official data for most periods analyzed. The research makes three substantive contributions. First, it reveals considerable monthly variability in poverty and inequality, underscoring the limitations of annual reporting in capturing short-term fluctuations. Second, the proposed methodology significantly reduces information lag, which improves the ability to make decisions. Third, findings demonstrate the pivotal role of labor market dynamism in driving changes in poverty.
References
Angelini, E., Rünstler, G., & Bańbura, M. (2008). Estimating and forecasting the euro area monthly national accounts from a dynamic factor model (Working Paper Series, No 953). European Central Bank. https://web.archive.org/web/20241220021327/https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp953.pdf
Arakaki, G., Rodriguez Chamussy, L., & Vezza, E. (2020). Nowcasting Poverty in Argentina : A Methodological Note (English). World Bank. http://documents.worldbank.org/curated/en/283681593599582508
Banbura, M., Rünstler, G. (2007). A look into the factor model black box: publication lags and the role of hard and soft data in forecasting GDP (Working Paper Series, No. 751). European Central Bank. https://web.archive.org/web/20241220104744/https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp751.pdf
Brum, M., & De Rosa, M. (2021). Too little but not too late: nowcasting poverty and cashtransfers’ incidence during COVID-19’s crisis. World Development, 140, 105227. https://doi.org/10.1016/j.worlddev.2020.105227
Douidich, M., Ezzrari, A., Van der Weide, R., & Verme, P. (2013). Estimating Quarterly Poverty Rates Using Labor Force Surveys : A Primer (Policy Research Working Paper, 6466). World Bank. https://hdl.handle.net/10986/15599
Grosse, M., Klasen, S., & Spatz, J. (2009). Matching Household Surveys with DHS Data to Create Nationally Representative Time Series of Poverty: An Application to Bolivia (Discussion Papers, No. 21). Courant Research Centre PEG, Georg-August Universität Göttingen.
Habib, B., Narayan, A., Olivieri, S., & Sanchez-Paramo, C. (2010). Assessing Ex Ante the Poverty and Distributional Impact of the Global Crisis in a Developing Country : A Micro-simulation Approach with Application to Bangladesh (Policy Research working paper, 5238). World Bank. https://hdl.handle.net/10986/3725
Huesca, L., Llamas, L., Jara, H. X., Vargas Téllez, C., & Rodríguez, D. (2021). The impact of the COVID-19 pandemic on poverty and inequality in Mexico. Revista mexicana de economía y finanzas, 16(3), e633. https://doi.org/10.21919/remef.v16i3.633
Instituto Nacional de Estadística y Censos. (2020a). Encuesta Continua de Empelo 2020 [Base de datos no publicada].
Instituto Nacional de Estadística y Censos. (2020b). Encuesta Nacional de Hogares 2020 [Base de datos no publicada].
Instituto Nacional de Estadística y Censos. (2020c). Encuesta Nacional de Hogares (ENAHO) 2020. Creación de variables. https://sistemas.inec.cr/pad5/index.php/catalog/264/download/3182
Instituto Nacional de Estadística y Censos. (2021a). Encuesta Continua de Empelo 2021 [Base de datos no publicada].
Instituto Nacional de Estadística y Censos. (2021b). Encuesta Nacional de Hogares 2021 [Base de datos no publicada].
Instituto Nacional de Estadística y Censos. (2022a). Encuesta Continua de Empelo 2022 [Base de datos no publicada].
Instituto Nacional de Estadística y Censos. (2022b). Encuesta Nacional de Hogares 2022 [Base de datos no publicada].
Instituto Nacional de Estadística y Censos. (2023a). Encuesta Continua de Empelo 2023 [Base de datos no publicada].
Instituto Nacional de Estadística y Censos. (2023b). Encuesta Nacional de Hogares 2023 [Base de datos no publicada].
Instituto Nacional de Estadística y Censos. (2024). Costa Rica. Líneas de pobreza según la Canasta Básica Alimentaria (CBA) 2011 [Base de datos]. admin.inec.cr/sites/default/files/2024-05/seEconomCBA042024-01.xlsx
Jara, H. X., Montesdeoca, L., & Tasseva, I. (2022). The Role of Automatic Stabilizers and Emergency Tax–Benefit Policies During the COVID-19 Pandemic: Evidence from Ecuador. European Journal of Development Research, 34, 2787–2809. https://doi.org/10.1057/s41287-021-00490-1
Jara, H. X., Rodríguez, D., Collado, D., Torres, J., Mideros, A., Montesdeoca, L., Avellaneda, A., Chang, R., & Vanegas, O. (2024). Assessing the role of tax-benefit policies during the COVID-19 pandemic: Evidence from the Andean region. Review of Development Economics, 29(1), 226–246. https://doi.org/10.1111/rode.13125
Newhouse, D., & Vyas, P. (2018). Nowcasting poverty in India for 2014-15 : A Survey to Survey Imputation Approach (Global Poverty Monitoring Technical Note, 6). World Bank. http://documents.worldbank.org/curated/en/294251537365339600
Rodríguez, D., Jara, H. X., Dondo, M., Arancibia, C., Macas, D., Riella, R., Urraburu, J., Llamas, L., Huesca, L., Torres, J., & Chang, R. (2022). The role of tax–benefit systems in protecting household incomes in Latin America during the COVID-19 pandemic (WIDER Working Paper, 2022/125). UNU-WIDER. https://doi.org/10.35188/UNU-WIDER/2022/258-4
Stifel, D., & Christiaensen, L. (2006). Tracking Poverty over Time in the Absence of Comparable Consumption Data (Policy Research Working Paper; No. 3810). World Bank. https://hdl.handle.net/10986/8790

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright (c) 2025 Esteban Huang Zheng, Luis Ángel Oviedo C., Saúl Paredes, Juan Robalino (Autor/a)