A multivariate characterization of productive-reproductive efficiency and age at first calving in Holstein cows

Authors

DOI:

https://doi.org/10.15517/am.v32i1.43184

Keywords:

grazing system, indicators, longevity, milk production, reproduction

Abstract

Introduction. The evaluation of productive efficiency must be accompanied by comprehensive indicators to assess the behavior of dairy cows in grazing systems. Objective. To identify in a herd of Holstein dairy cows grouped by age at first calving, those with the highest efficiency in grazing systems, based on a multivariate characterization of productive and reproductive indicators. Materials and methods. Retrospective data from 1785 primiparous cows of the Holstein breed, registered between the years 1999-2016 in two commercial establishments belonging to the Los Angeles-Argentina company, were used. Cows were categorized into three groups according to their age at first calving: Group 1 - 750 days, Group 2 - 840 days, and Group 3 - 1098 days. The variables total productive life, total milk production, milk index, and average calving interval were used associated with the age at first calving using the multivariate principal components technique. Results. No groupings associated with age group at first birth were observed. The two first principal components explained 92.9 % of the total variance observed. It was possible to define four quadrants representing all the combinations between the positive and negative values. Cows distribution of the three groups in the four quadrants was homogeneous (x2=6.291; p=0.391). The distribution per quadrant, regardless of the age group at first calving was: Quadrant I (52/150, 34.7 %); Quadrant II (42/150, 28.0 %); Quadrant III (28/150; 18.7 %); Quadrant IV (28/150; 18.7 %). Conclusion. Cows located in Quadrant II (negative values of PC1 and positive values of PC2), were efficient in the grazing system, showed greater longevity with productive levels compatible with the limitations of the system, and with an efficient reproductive behavior.

Downloads

Download data is not yet available.

Author Biography

Pablo Roberto Marini, Universidad Nacional de Rosario

Profesor Asociado de la Cátedra de Producción de Bovinos Lecheros de la FAcultad de Ciencias Veterinarias de la Universidad NAcional de Rosario

Director del Doctorado de la FCV-UNR

Director del Centro de Latinoamericano de Estudios de Problemáticas Lecheras (CLEPL)

References

Bello, N. M., Stevenson, J. S., & Tempelman, R. J. (2012). Invited review: milk production and reproductive performance: modern interdisciplinary insights into an enduringaxiom. Journal of Dairy Science, 95, 5461–5475. https://doi.org/10.3168/jds.2012-5564

Bonczeck, R. R., Young, C. W., Wheaton, J. E., & Miller, K. P. (1988). Responses of somatotropin, insulin, prolactin, and thyroxine to selection for milk yield in Holsteins. Journal of Dairy Science, 71, 2470–2479.

Berry, D. P., Friggens, N. C., Lucy, M., & Roche, J. R. (2016). Milk production and fertility in cattle. Annual Review of Animal Biosciences, 4, 269–290. https://doi.org/10.1146/annurev-animal-021815-111406

Carrasco, J. L., & Hernán, M. A. (1993). Estadística multivariante en las ciencias de la vida. Editorial Ciencia.

Do, C., Wasana, N., Cho, K., Choi, Y., Choi, T., Park, B., & Lee, B. (2013). The Effect of Age at First Calving and Calving Interval on Productive Life and Lifetime Profit in Korean Holsteins. Asian Australasian Journal of Animal Science, 26(11), 1511–1517. http://dx.doi.org/10.5713/ajas.2013.13105

Frioni, N., Urioste, J. I., Aguilar I., & Rovere G. (2016). Genetic parameters of days open, milk, fat and protein yield of Uruguayan Holstein on pasture systems. Journal of Basic & Applied Genetics, 27(Suppl. 1), 190. https://sag.org.ar/jbag/wp-content/uploads/2020/01/V.XXVIII_2016_Suppl1_19092016.pdf

Grandin, T. (2000). Principles of animal behavior for the handling of bovines and other herbivorous in extensive conditions. In G. Temple (Ed.), Livestock Handling and Transport (2nd ed., pp. 63–85). CABI Publishing.

Hileman, S. M., Lubbers, L. S., Jansen, H. T., & Lehman, M. N. (1999). Changes in hypothalamic estrogen receptor-containing cell numbers in response to feed restriction in the female lamb. Neuroendocrinology, 69, 430–437.

Honarvar, M., Nejati-Javaremi, A., Miraei-Ashtiani, S. R., & Banadaki, M. (2010). Effect of length of productive life on genetic trend of milk production and profitability: A simulation study. African Journal of Biotechnology, 9(20), 3000–3010. http://www.academicjournals.org/AJB

Kirkpatrick, M., & Meyer, K. (2004). Direct estimation of genetic principal components: simplified analysis of complex phenotypes. Genetics, 168, 2295–2306. https://doi.org/10.1534/genetics.104.029181

König, S., Chang, Y. M., Borstel, U. U. V., Gianola, D., & Simianer, H. (2008). Genetic and phenotypic relationships among milk urea nitrogen, fertility, and milk yield in Holstein cows. Journal of Dairy Science, 91, 4372–4382. https://doi.org/10.3168/jds.2008-1236

Marini, P. R., & Oyarzabal, M. I. (2002a). Patrones de producción en vacas lecheras. 1 Componentes de la producción y sus características según nivel de producción. Revista Argentina Producción Animal, 22(1), 29–46.

Marini, P. R., & Oyarzabal, M. I. (2002b). Patrones de producción en vacas lecheras. 2 Descripción de la vaca promedio y estimación de los ingresos según categorías de producción. Revista Argentina Producción Animal, 22(1), 47–60.

Marini, P. R., Castro, R., Frana, E., & Di Masso, R. J. (2017). Multivariate characterization of biological efficiency in dairy cows in grazing systems. Sustainable Agriculture Research, 6(4), 83–92. https://doi.orgi.orgi.org/10.5539/sar.v6n4p83sar

Miglior, F., Fleming, A., Malchiodi, F., Brito, L. F., Martin, P., & Baes, C. F. (2017). A 100-Year Review: Identification and genetic selection of economically important traits in dairy cattle. Journal of Dairy Science, 100, 10251–10271. https://doi.org/10.3168/jds.2017-12968

Nebel, R. L., & McGilliard, M. L. (1993). Interactions of high milk yield and reproductive performance in dairy cows. Journal of Dairy Science, 76, 3257–3268. https://doi.org/10.3168/jds.S0022-0302(93)77662-6

Oltenacu, P. A., & Algers, B. (2005). Selection for increased production and the welfare of dairy cows: Are new breeding goals needed? Ambio, 34(4–5), 311–315.

Oltenacu, P. A., & Broom, D. M. (2010). The impact of genetic selection for increased milk yield on the welfare of dairy cows. Animal Welfare, 19, 39–49.

Ratwan, P., Mandal, A., Kumar, M., & Chakravarty, A. K. (2017). Genetic analysis of milk production efficiency traits in Jersey crossbred cattle. Indian Journal of Animal Research, 51(4), 644–647. https://doi.org/10.18805/ijar.7076

Roso, V. M., & Fries, L. A. (1995). Componentes principais em bovinos da raça PolledHereford à desmama e sobreano. Revista Brasileira de Zootecnia, 24, 728–735.

Singh, J., Singh, V. K., Kumar, A. Y., & Kumar, A. J. (2017). Effect of genetic and non-genetic factors on age at first calving in Sahiwal cattle. Indian Journal of Animal Research, 51(4), 635–639. https://doi.org/10.18805/ijar.8425

Singh, S., Rana, Z. S., Pander, B. L., Dhaka S. S., & Kumar, R. (2013). Prediction of phenotypic value of lifetime performance from early lactation traits in Hariana cattle. Indian Journal of Animal Research, 47(4), 352–355. https://arccjournals.com/journal/indian-journal-of-animal-research/ARCC156

Wiltbank, M. C., Baez, G. M., García-Guerra, A., Toledo, M. Z., Monteiro, P. L. J., Melo, L. F., Ochoa, J. C., Santos, J. E. P., & Sartori, R. (2016). Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology, 86, 239–253. https://doi.org/10.1016/j.theriogenology.2016.04.037

Published

2021-01-01

How to Cite

Marini, P. R., Biga, P., & Di-Masso, R. (2021). A multivariate characterization of productive-reproductive efficiency and age at first calving in Holstein cows. Agronomía Mesoamericana, 32(1), 34–44. https://doi.org/10.15517/am.v32i1.43184