Imbibition and temperature to rupture latency of Ischaemum rugosum Salisb

Authors

DOI:

https://doi.org/10.15517/am.v31i3.38392

Keywords:

seeds germination, destilled water, potassium nitrate, water temperature, environment temperature

Abstract

Introduction. The germination of Ischaemum rugosum Salisb. is uneven due to the presence of latency, a process that affects its management and research. Objective. To evaluate three methods for breaking dormancy in I. rugosum Salisb. seeds that allow its uniform germination under controlled conditions. Materials and methods. Three experiments were carried out at the Laboratorio Oficial de Análisis de Calidad de Semillas del Centro para Investigaciones en Granos y Semillas of the Universidad de Costa Rica, San José, Costa Rica; from May to June 2016. In the first experiment, potassium nitrate and distilled water, two imbibition times, and a control without imbibition were tested. In the second, the seeds were subjected for three weeks to four constant temperature regimes (15 °C, 30 °C, alternating temperatures 15 and 30 °C, and ambient temperature of 26 °C). In the third, seeds were placed in water for one hour at different degrees of heat (23, 30, 45, and 65 °C), a control without imbibition was used. Results. In the first experiment, the best treatments were 16 and 24 h of imbibition with potassium nitrate. In the second experiment temperature was a significant factor, germination was reached with three temperatures used, only with 15 °C there was no germination. In the third experiment the temperature in the water was a significant factor, the highest germination occurred in the treatment at 23 °C, while at 65 °C no germination occurred. Conclusion. The use of hot water as a way to break latency was ruled out. It is concluded that the best treatments were KNO3 at 0.25 % for 16 or 24 h, while the use of water was only effective in the time of 16 h, in all three cases alternating temperatures between 15 and 30 ° C.

Downloads

Download data is not yet available.

References

Agüero, R. 1996. Malezas del arroz y su manejo. I.M.R. S.A., San José, CRI.

Alboresi, A., C. Gestin, M. Leydecker, M. Bedu, C. Meyer, and H.N. Truong. 2005. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ. 28:200-512. doi:10.1111/j.1365-3040.2005.01292.x

Andrade, S., y H. Laurentin. 2015. Efecto del nitrato de potasio sobre la germinación de semillas de tres cultivares de ají dulce (Capsicum chinense Jacq.). Rev. Unell. Cienc. Tec. 33:25-29.

Awan, T.H., B.S. Chauhan, and P.C Cruz. 2014. Physiological and morphological responses of Ischaemum rugosum Salisb. (wrinkled grass) to different nitrogen rates and rice seeding rates. PLoS One 9(6):e98255. doi:10.1371/journal.pone.0098255

Bakar, B.H., and L.N.A. Nabi. 2003. Seed germination, sedling establischment and growth patterns of wrinklegrass (Ischaemum rugosum Salisb.). Weed Biol. Manag. 3(18):8-14. doi:10.1046/j.1445-6664.2003.00075.x

Balocchi, O., I. López, y M. Pfíster. 1999. Características físicas y germinativas de la semilla de especies pratenses nativas y naturalizadas del dominio húmedo de Chile: Anthoxanthum odoratum, Holcus lanatus, Poa pratensis y Lotus uliginosus. Agro Sur 27(2):37-47. doi:10.4206/agrosur.1999.v27n2-04

Baskin, C., and J. Baskin. 2014. Seeds: Ecology, bioegeography, and evolution of dormancy and germination. 2nd ed. Elsevier Inc., Amsterdam, NLD. doi:10.1016/C2013-0-00597-X

Batak, I., M. Dević, Z. Gibal, D. Grubišić, K.L. Poff, and R. Konjević. 2002. The effects of potassium nitrate and NO-donors on phytochrome A- and phytochrome B-specific induced germination of Arabidopsis thaliana seeds. Seed Sci. Res. 12:253-259. doi:10.1079/SSR2002118

Benech, R.L., C.M. Ghersa, R.A. Sanchez, and P. Insausti. 1990. Temperature effects on dormancy release and germination rate in Sorghum halepense (L.) Pers. seeds: a quantitative analysis. Weed Res. 30:81-89. doi:10.1111/j.1365-3180.1990.tb01690.x

Bewley, J.D. 1997. Seed germination and dormancy. Plant Cell 9:1055-1066. doi:10.1105/tpc.9.7.1055

Bilbao, B., y C. Matías.1979. Efecto de diferentes métodos de escarificación sobre la germinación de las semillas de Cenchrus ciliaris cv. Biloela. Pastos y Forrajes 2:225-238.

Duclos, D.V., D.T. Ray, D.J. Johnson, and A.G. Taylor. 2014. Investigating seed dormancy in switchgrass (Panicum virgatum L.): understanding the physiology and mechanisms of coat-imposed seed dormancy. Ind. Crops Prod. 45:377-387. doi:10.1016/j.indcrop.2013.01.005

Franklin, KA. 2009. Light and temperature signal crosstalk in plant development. Curr. Opin. Plant Biol. 12:63-68. doi:10.1016/j.pbi.2008.09.007

Herrera, J., E. Guevara, R. Alizaga, y V. Jiménez. 2006. Germinación y crecimiento de la planta. Universidad de Costa Rica. San José, CRI.

Jarma, A., J. Arbelaez, y J. Clavijo. 2007. Germinación de Ischaemum rugosum Salisb. en respuesta a estímulos ambientales y químicos. Rev. Temas Agrar. 12(2):31-41. doi:10.21897/rta.v12i2.1198

Labrada, R., J.C. Caseley, y C. Parker. 1996. Manejo de malezas para países en desarrollo. FAO, Roma, ITA.

Marenco, R.A., y R.V. Santos. 1999. Wrinkledgrass and rice intra and interspecific competition. Rev. Bras. Fisiol. Veg. 11(2):107-111.

Mérola, R., y S. Díaz. 2012. Métodos, técnicas y tratamientos para inhibir latencia en semillas de plantas forrajeras. Trabajo final curso de posgrado, Universidad de la Empresa, Montevideo, URY.

Mester, T.C., and D.D. Buhler. 1991. Effects of soil temperature, seed depth, and cyanazine on giant foxtail (Setaria faberi) and velvetleaf (Abutilon theophrasti) seedling development source. Weed Sci. 39:204-209. doi:10.1017/S0043174500071484

Moreira, N., y J. Nakagawa. 1988. Semillas. Ciencia, tecnología y producción. Agropecuaria Hemisferio Sur, Montevideo, URY.

Moreno, C. 2012. Efecto de ácido giberélico (AG3), nitrato de potasio (KNO3) y rizobacterias promotoras del crecimiento vegetal (PGPRs), sobre el desarrollo temprano de Solanum sessiliflorum (cocona). Tesis grado, Universidad Militar Nueva Granada, Bogotá, COL.

Nonogaki, H., G.W. Basselb, and J.D. Bewley. 2010. Germination still a mystery. Plant Sci. 179:574-581. doi:10.1016/j.plantsci.2010.02.010

Ortiz, A., S. Blanco, G. Arana, L. López, S. Torres, Y. Quintana, P. Pérez, C. Zambrano, y A. Fischer. 2013. Estado actual de la resistencia de Ischaemum rugosum Salisb. al herbicida bispiribac-sodio en Venezuela. Bioagro 25(2):79-89.

Pabón, R. 1983. Algunos aspectos biológicos de la maleza falsa caminadora (Ischaemum rugosum). Rev. COMALFI 84(34):3-47.

Pérez, F., y J. Martínez.1994. Introducción a la fisiología vegetal. Ediciones Mundi-Prensa, Barcelona, ESP.

Siadat, S.A., S.A. Moosavi, M.S. Zadeh, F. Fotouhi, and M. Zirezadeh. 2011. Effects of halo and phytohormone seed priming on germination and seedling growth of maize under different duration of accelerated ageing treatment. Afr. J. Agric. Res. 6:6453-6462. doi:10.5897/AJAR11.920

Tinoco, R., y A. Acuña. 2009. Manual de recomendaciones del cultivo de arroz. Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria, San José, CRI.

Vanden-Born, W.H. 1971. Green foxtail: seed dormancy, germination and growth. Can. J. Plant Sci. 5:53-59. doi:10.4141/cjps71-010

Vargas, M. 1994. Estudio del comportamiento de semillas de la maleza “La Falsa Caminadora” (Ischaemum rugosum) bajo diferentes condiciones de siembra, temperatura y humedad. BOLTEC 27(1):52-58.

Yoshioka, T., T. Endo, and S. Satoh. 1998. Restoration of seed germination at supra optimal temperatures by furidone, an inhibitor of abscisic acid biosynthesis. Plant Cell Physiol. 39:307-312. doi:10.1093/oxfordjournals.pcp.a029371

Published

2020-09-01

How to Cite

Portuguez-García, M. P., Rodríguez-Ruiz, A. M., Porras-Martínez, C., & González-Lutz, M. I. (2020). Imbibition and temperature to rupture latency of Ischaemum rugosum Salisb. Agronomía Mesoamericana, 31(3), 793–802. https://doi.org/10.15517/am.v31i3.38392

Most read articles by the same author(s)

1 2 > >>