Resumen
El objetivo del presente estudio fue analizar la efectividad de la práctica mental (PM), práctica física (PF) y su combinación (PC) en el desempeño de| la destreza de dribbling de hockey de salón y la actividad eléctrica del músculo (AEM) braquiorradial del antebrazo dominante. Un total de 27 estudiantes universitarios de primer año de la carrera en Ciencias del Movimiento Humano, sin experiencia previa en la destreza, fueron asignados aleatoriamente a uno de tres grupos (PF, PM y PC). El desempeño de la destreza fue evaluado por medio del tiempo total, utilizando fotoceldas SmartspeedPro y la AEM se midió con un electromiograma Noraxon M400. La investigación se desarrolló en dos sesiones. En la primera sesión, se realizó el pretest, la práctica experimental según el grupo correspondiente y el post test del desempeño y AEM. En la segunda sesión, una semana después, se evaluó el desempeño en una prueba de retención. Al aplicar un análisis de varianza (ANOVA) de dos vías mixto [grupo (3) x medición (3)] se encontró que el desempeño de los tres grupos mejoró significativamente en la prueba de adquisición y retención. El ANOVA de dos vías mixto [grupo (3) x medición (2)] indicó que no hubo diferencias significativas en la AEM. La PF, PM y PC favorecieron el aprendizaje de la destreza; sin embargo, no se encontraron cambios en la actividad eléctrica del músculo braquiorradial del antebrazo dominante.
Citas
Avanzino, L., Gueugneau, N., Bisio, A., Ruggeri, P., Papaxanthis, C., y Bove, M. (2015). Motor cortical plasticity induced by motor learning through mental practice. Frontiers in behavioral neuroscience, 9, 105. doi: https://doi.org/10.3389/fnbeh.2015.00105
Azimkhani, A., Abbasian, S., Ashkani, A., y Gürsoy, R. (2013). The combination of mental and physical practices is better for instruction of a new skill. Nigde University Journal of Physical Education And Sport Sciences, 7(2). Recuperado de https://pdfs.semanticscholar.org/c040/35395002cc981df71f06434703ba3f35ccc9.pdf
Bassolino, M., Campanella, M., Bove, M., Pozzo, T., y Fadiga, L. (2014). Training the motor cortex by observing the actions of others during immobilization. Cerebral Cortex, 24(12), 3268-3276. doi: https://doi.org/10.1093/cercor/bht190
Brueckner, D., Göpfert, B., Kiss, R., y Muehlbauer, T. (2019). Effects of motor practice on learning a dynamic balance task in healthy young adults: A wavelet-based time-frequency analysis. Gait & posture, 70, 264-269. doi: https://doi.org/10.1016/j.gaitpost.2019.03.019
Crews, R. T., y Kamen, G. (2006). Motor-evoked potentials following imagery and limb disuse. International journal of neuroscience, 116(5), 639–651. doi: https://doi.org/10.1080/00207450600592198
Dahm, S. F., y Rieger, M. (2016). Is there symmetry in motor imagery? Exploring different versions of the mental chronometry paradigm. Attention, Perception, & Psychophysics, 78(6), 1794-1805. doi: https://doi.org/10.3758/s13414-016-1112-9
Feltz, D. L., y Landers, D. M. (1983). The effects of mental practice on motor skill learning and performance: A meta-analysis. Journal of Sport and Excercise Psychology, 5(1), 25-57. doi: https://doi.org/10.1123/jsp.5.1.25
Frenkel, M. O., Herzig, D. S., Gebhard, F., Mayer, J., Becker, C., y Einsiedel, T. (2014). Mental practice maintains range of motion despite forearm immobilization: A pilot study in healthy persons. Journal of rehabilitation medicine, 46(3), 225–232. doi: https://doi.org/10.2340/16501977-1263
Gomes, T. V. B., Ugrinowitsch, H., Marinho, N., Shea, J. B., Raisbeck, L. D., y Benda, R. N. (2014). Effects of Mental Practice in Novice Learners in a Serial Positioning Skill Acquisition. Perceptual and Motor Skills, 119(2), 397-414. doi: https://doi.org/10.2466/23.PMS.119c20z4
Guillot, A., Collet, C., Nguyen, V., Malouin, F., Richards, C., y Doyon, J. (2009). Brain activity during visual versus kinesthetic imagery: An fMRI study. Human Brain Mapping, 30(7), 2157–2172. doi: https://doi.org/10.1002/hbm.20658
Guillot, A., Lebon, F., Rouffet, D., Champely, S., Doyon, J., y Collet, C. (2007). Muscular responses during motor imagery as a function of muscle contraction types. International Journal of Psychophysiology, 66(1), 18-27. doi: https://doi.org/10.1016/j.ijpsycho.2007.05.009
Hegazy, K., Sherif, A.M., y Houta, S.S. (2015). The effect of mental training on motor performance of tennis and field hockey strokes in novice players. Advances in Physical Education, 5(2), 77-83. doi: https://doi.org/10.4236/ape.2015.52010
Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C. L., y Doyon, J. (2003). Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. Neuroimage, 20(2), 1171–1180. doi: https://doi.org/10.1016/s1053-8119(03)00369-0
Keppel, G., y Wickens, T. D. (2004). Design and Analysis: A Researcher’s Handbook. Prentice Hall. Recuperado de https://books.google.com/books?id=SOckAQAAIAAJ
Konrad, P. (2005). The ABC of EMG: A practical introduction to kinesiological electromyography. Recuperado de https://www.researchgate.net/publication/270895853_The_abc_of_emg
Liu, H., Song, L.P., y Zhang, T. (2014). Mental practice combined with physical practice to enhance hand recovery in stroke patients. Behavioural neurology, 2014. doi: https://doi.org/10.1155/2014/876416
Lotze, M., Montoya, P., Erb, M., Hülsmann, E., Flor, H., Klose, U., Birbaumer, N., y Grodd, W. (1999). Activation of cortical and cerebellar motor areas during executed and imagined hand movements: An fMRI study. Journal of cognitive neuroscience, 11(5), 491–501. doi: https://doi.org/10.1162/089892999563553
Luft, A. R., Skalej, M., Stefanou, A., Klose, U., y Voigt, K. (1998). Comparing motion-and imagery-related activation in the human cerebellum: A functional MRI study. Human brain mapping, 6(2), 105–113. doi: https://doi.org/10.1002/(sici)1097-0193(1998)6:2%3C105::aid-hbm3%3E3.0.co;2-7
Magill, R. A., y Anderson, D. (2013). Motor Learning and Control: Concepts and Applications (10th ed.). McGraw-Hill Higher Education. Recuperado de https://www.amazon.com/-/es/Richard-Magill/dp/0078022673
Matsuda, T., Watanabe, S., Kuruma, H., Murakami, Y., Watanabe, R., Senoo, A., y Yonemoto, K. (2011). Neural Correlates of Chopsticks Exercise for the Non-Dominant Hand; Comparison Among the Movement, Images and Imitations. Rigakuryoho Kagaku, 26(1), 117-122. doi: https://doi.org/10.1589/rika.26.117
Miller, K.J., Schalk, G., Fetz, E.E., den Nijs, M., Ojemann, J.G., y Rao, R.P. (2010). Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proceedings of the National Academy of Sciences, 107(9), 4430–4435. doi: https://doi.org/10.1073/pnas.0913697107
Navarro, I., Araya-Vargas, G. A., y Salazar, W. (2002). Entrenamiento mental en karatecas: Efecto del tiempo de imaginación de una kata sobre el nivel de ejecución. Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud, 2(1), 55–60. doi: https://doi.org/10.15517/pensarmov.v2i1.435
Olusoga, P., Maynard, I., Butt, J., y Hays, K. (2014). Coaching under pressure: Mental skills training for sports coaches. Sport & Exercise Psychology Review, 10(3), 31–44. Recuperado de https://www.researchgate.net/publication/272794376_Coaching_under_pressure_Mental_skills_training_for_sports_coaches
Pangrazi, R. P., y Beighle, A. (2019). Dynamic physical education for elementary school children (19th ed.). Illinois: Human Kinetics Publishers. Recuperado de https://www.amazon.com/Dynamic-Physical-Education-Elementary-Children/dp/1492592285
Paravlic, A. H., Slimani, M., Tod, D., Marusic, U., Milanovic, Z., y Pisot, R. (2018). Effects and dose–response relationships of motor imagery practice on strength development in healthy adult populations: a systematic review and meta-analysis. Sports Medicine, 48(5), 1165-1187. doi: https://doi.org/10.1007/s40279-018-0874-8
Reaz, M. B. I., Hussain, M. S., y Mohd-Yasin, F. (2006). Techniques of EMG signal analysis: Detection, processing, classification and applications (Correction). Biological procedures online, 8(1), 163. doi: https://doi.org/10.1251/bpo124
Rozand, V., Lebon, F., Papaxanthis, C., y Lepers, R. (2014). Does a mental training session induce neuromuscular fatigue? Medicine & Science in Sports & Exercise, 46(10), 1981–1989. doi: https://doi.org/10.1249/mss.0000000000000327
Ruffino, C., Papaxanthis, C., y Lebon, F. (2017). Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience, 341, 61-78. doi: 10.1016/j.neuroscience.2016.11.023
Sánchez, X., y Lejeune, M. (1999). Práctica mental y deporte: En qué sabemos después de casi un siglo de investigaciónn. Revista de psicología del deporte, 8(1), 21–37. Recuperado de http://www.rpd-online.com/article/download/89/89
Shea, C.H., y Wright, D.L. (1997). An Introduction to Human Movement: The Sciences of Physical Education. Allyn and Bacon. Recuperado de https://www.amazon.com/-/es/Charles-H-Shea/dp/0137951132
Slimani, M., Tod, D., Chaabene, H., Miarka, B., y Chamari, K. (2016). Effects of mental imagery on muscular strength in healthy and patient participants: A systematic review. Journal of sports science & medicine, 15(3), 434-450. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974856/pdf/jssm-15-434.pdf
Stecklow, M.V., Infantosi, A.F.C., y Cagy, M. (2010). EEG changes during sequences of visual and kinesthetic motor imagery. Arquivos de neuro-psiquiatria, 68(4), 556–561. doi: https://doi.org/10.1590/s0004-282x2010000400015
Stegeman, D., y Hermens, H. (2007). Standards for surface electromyography: The European project Surface EMG for non-invasive assessment of muscles (SENIAM). Enschede: Roessingh Research and Development, 108–12. Recuperado de http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.623.2040&rep=rep1&type=pdf
Thomas, J.R., Nelson, J.K., y Silverman, S. (2005). Research Methods in Physical Activity (5a ed.). Human Kinetics.
Vodičar, J., Kovač, E., y Tušak, M. (2012). Effectiveness of athletes’ pre-competition mental preparation. Kinesiologia Slovenica, 18(1), 22-37. Recuperado de https://www.usfx.bo/nueva/vicerrectorado/citas/SALUD_10/Fisioterapia_y_Kinesiologia/56.pdf
Wriessnegger, S.C., Steyrl, D., Koschutnig, K., y Müller-Putz, G.R. (2014). Short time sports exercise boosts motor imagery patterns: Implications of mental practice in rehabilitation programs. Frontiers in human neuroscience, 8. doi: https://doi.org/10.3389/fnhum.2014.00469
Zapała, D., Zabielska-Mendyk, E., Cudo, A., Krzysztofiak, A., Augustynowicz, P., y Francuz, P. (2014). Short-Term Kinesthetic Training for Sensorimotor Rhythms: Effects in Experts and Amateurs. Journal of Motor Behavior, 47(4), 312–318. doi: https://doi.org/10.1080/00222895.2014.982067