Resumen
Se sabe que el entrenamiento de sprint por intervalos (SIT) mejora el desempeño aeróbico, así como los marcadores de salud y aptitud física en la población no atlética. Sin embargo, no existe información suficiente sobre el desempeño cuando se interrumpe el SIT. El objetivo del presente estudio fue investigar las alteraciones en el proceso de desentrenamiento de la evolución de la aptitud física adaptativa causadas por el entrenamiento de sprint por intervalos de corta duración. El diseño general del estudio se clasificó como antes del SIT, período de entrenamiento, después del SIT y medidas del período de desentrenamiento. Los sujetos (n=26) completaron las mediciones de base de la prueba de carrera de 20 m y después fueron distribuidos aleatoriamente en grupos de entrenamiento y de control. El grupo de control mantuvo su rutina diaria y el grupo de entrenamiento realizó el SIT durante 4 semanas. La prueba de carrera de 20 m fue aplicada antes y después del entrenamiento y en las semanas 4ª y 8ª del desentrenamiento. Después del período de entrenamiento, el desempeño aeróbico aumentó en el grupo de entrenamiento (p<0.05). Además, los aumentos del desempeño aeróbico se mantuvieron durante las 4 semanas del desentrenamiento (p<0.05). Pero los aumentos de desempeño desaparecieron en la 8ª semana del desentrenamiento (p>0.05). Hacer una pausa en el programa de ejercicios por más de 4 semanas en individuos jóvenes saludables puede hacer que los efectos positivos del SIT en el consumo máximo de oxígeno (VO2max) desaparezcan. Los participantes en el SIT no deben hacer una pausa en el ejercicio por más de 4 semanas para mantener la ganancia aeróbica.
Citas
Aslankeser, Z., & Balci, S. S. (2017). Substrate oxidation during incremental exercise in young women: the effects of 2-week high intensity interval training. Medicina dello Sport, 70(2), 137-149. http://dx.doi.org/10.23736/S0025-7826.17.03010-1
Astorino, T. A., Edmunds, R. M., Clark, A., King, L., Gallant, R. A., Namm, S., Fischar, A., & Wood, K. M. (2017). High-intensity interval training increases cardiac output and VO2max. Med Sci Sports Exerc, 49(2), 265-273. https://doi.org/10.1249/mss.0000000000001099
Boullosa, D., Dragutinovic, B., Feuerbacher, J. F., Benítez‐Flores, S., Coyle, E. F., & Schumann, M. (2022). Effects of short sprint interval training on aerobic and anaerobic indices: A systematic review and meta‐analysis. Scandinavian Journal of Medicine & Science in Sports, 32(5), 810-820. https://doi.org/10.1111/sms.14133
Burgomaster, K. A., Cermak, N. M., Phillips, S. M., Benton, C. R., Bonen, A., & Gibala, M. J. (2007). Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292(5), R1970-R1976. https://doi.org/10.1152/ajpregu.00503.2006
Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., MacDonald, M. J., McGee, S. L., & Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. The Journal of physiology, 586(1), 151-160. https://doi.org/10.1113%2Fjphysiol.2007.142109
Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J., Bradwell, S. N., & Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of applied physiology, 98(6), 1985-1990. https://doi.org/10.1152/japplphysiol.01095.2004
Clemente, F. M., Soylu, Y., Arslan, E., Kilit, B., Garrett, J., van den Hoek, D., Badicu, G., & Silva, A. F. (2022). Can high-intensity interval training and small-sided games be effective for improving physical fitness after detraining? A parallel study design in youth male soccer players. PeerJ, 10, e13514. https://doi.org/10.7717/peerj.13514
Chung, J. W., Lee, O., & Lee, K. H. (2023). Estimation of maximal oxygen consumption using the 20 m shuttle run test in Korean adults aged 19-64 years. Science & Sports, 38(1), 68-74. https://doi.org/10.1016/j.scispo.2021.10.005
Daussin, F. N., Zoll, J., Dufour, S. P., Ponsot, E., Lonsdorfer-Wolf, E., Doutreleau, S., Mettauer, B., Piquard, F., Geny, B., & Richard, R. (2008). Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 295(1), R264-R272. https://doi.org/10.1152/ajpregu.00875.2007
Durnin, J. V., & Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. British journal of nutrition, 32(1), 77-97. https://doi.org/10.1079/bjn19740060
Flouris, A. D., Metsios, G. S., & Koutedakis, Y. (2005). Enhancing the efficacy of the 20 m multistage shuttle run test. British journal of sports medicine, 39(3), 166-170. https://doi.org/10.1136%2Fbjsm.2004.012500
Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., Nieman, B.A., Swain, D. P. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine and science in sports and exercise, 43(7), 1334–1359. https://doi.org/10.1249/MSS.0b013e318213fefb
Gibala, M. J., Little, J. P., Van Essen, M., Wilkin, G. P., Burgomaster, K. A., Safdar, A., Raha, S., & Tarnopolsky, M. A. (2006). Short‐term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. The Journal of physiology, 575(3), 901-911. https://doi.org/10.1113%2Fjphysiol.2006.112094
Gillen, J. B., & Gibala, M. J. (2014). Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Applied physiology, nutrition, and metabolism, 39(3), 409-412. https://doi.org/10.1139/apnm-2013-0187
Grant, S., Corbett, K., Amjad, A. M., Wilson, J., & Aitchison, T. (1995). A comparison of methods of predicting maximum oxygen uptake. British journal of sports medicine, 29(3), 147-152. https://doi.org/10.1136/bjsm.29.3.147
Hood, M. S., Little, J. P., Tarnopolsky, M. A., Myslik, F., & Gibala, M. J. (2011). Low-volume interval training improves muscle oxidative capacity in sedentary adults. Medicine and science in sports and exercise, 43(10), 1849-1856. https://doi.org/10.1249/mss.0b013e3182199834
Joo, C. H. (2018). The effects of short term detraining and retraining on physical fitness in elite soccer players. PloS one, 13(5), e0196212. https://doi.org/10.1371/journal.pone.0196212
Macpherson, R., Hazell, T. J., Olver, T. D., Paterson, D. H., & Lemon, P. (2011). Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exerc, 43(1), 115-122. https://doi.org/10.1249/mss.0b013e3181e5eacd
Matsuzaka, A., Takahashi, Y., Yamazoe, M., Kumakura, N., Ikeda, A., Wilk, B., & Bar-Or, O. (2004). Validity of the multistage 20-m shuttle-run test for Japanese children, adolescents, and adults. Pediatric exercise science, 16(2), 113-125. https://doi.org/10.1123/pes.16.2.113
Mendez-Cornejo, J., Gomez-Campos, R., Andruske, C. L., Sulla-Torres, J., Urra-Albornoz, C., Urzua-Alul, L., & Cossio-Bolanos, M. (2020). Maximum Oxygen Consumption: Validity of the Run Test of 20 Meters and Proposal of Equations for Prediction in Young People. Journal of Exercise Physiology Online, 23(1). https://www.asep.org/asep/asep/JEPonlineFEBRUARY2020_Marco%20Cossio-Bolanos.pdf
Mujika, I., & Padilla, S. (2000). Detraining: Loss of training-induced physiological and performance adaptations. Part II: Long term insufficient training stimulus. Sports Medicine, 30(3), 145-154. https://doi.org/10.2165/00007256-200030030-00001
Rodas, G., Ventura, J. L., Cadefau, J. A., Cussó, R., & Parra, J. (2000). A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. European journal of applied physiology, 82, 480-486. https://doi.org/10.1007/s004210000223
Sökmen, B., Witchey, R. L., Adams, G. M., & Beam, W. C. (2018). Effects of sprint interval training with active recovery vs. endurance training on aerobic and anaerobic power, muscular strength, and sprint ability. The Journal of Strength & Conditioning Research, 32(3), 624-631.
Tomlin, D., & Wenger, H. (2002). The relationships between aerobic fitness, power maintenance and oxygen consumption during intense intermittent exercise. Journal of science and medicine in sport, 5(3), 194-203. https://doi.org/10.1016/s1440-2440(02)80004-4
Vollaard, N., Metcalfe, R., & Williams, S. (2017). Effect of number of sprints in a SIT session on change in VO2max: a meta-analysis. Medicine and science in sports and exercise, 49(6), 1147-1156. https://doi.org/10.1249/mss.0000000000001204
##plugins.facebook.comentarios##
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Derechos de autor 2024 Zubeyde Aslankeser, Cebrail Altinsoy