Abstract
Sprint interval training (SIT) has been known to improve aerobic performance as well as health and fitness markers in non-athletic population. However, there's not enough information about performance when SIT is stopped. The aim of this study was to investigate the alterations in the detraining process of the evolution of adaptive physical fitness caused by short-term sprint interval training. The general design of the study was classified as before SIT, training period, after SIT and detraining period measurements. The subjects (n=26) completed the baseline measurements of the 20-m shuttle run test and then were randomized as training and control groups. The control group continued their daily routine and the training group ran SIT for 4 weeks. The 20-m shuttle run test was applied before and after training, and in the 4th and 8th detraining weeks. After the training period, aerobic performance increased in the training group (p<0.05). In addition, aerobic performance increases were maintained for the 4 weeks of detraining (p<0.05). But the performance increments disappeared in the 8th detraining week (p>0.05). Taking a break from the exercise program for more than 4 weeks in healthy young individuals may cause the positive effects of SIT on maximum oxygen uptake (VO2max) to disappear. SIT participants should not take a break from exercise for more than 4 weeks if they are to maintain aerobic gain.
References
Aslankeser , Z., y Balci, S. S. (2017). Oxidación del sustrato durante el ejercicio incremental en mujeres jóvenes: los efectos del entrenamiento de intervalos de alta intensidad de 2 semanas. Medicina dello Sport, 70(2), 137-149. http://dx.doi.org/10.23736/S0025-7826.17.03010-1
Astorino , T. A., Edmunds, R. M., Clark, A., King, L., Gallant, R. A., Namm, S., Fischar, A., y Wood, K. M. (2017). El entrenamiento de intervalos de alta intensidad aumenta el gasto cardíaco y el VO2máx. Med Sci Sports Exerc, 49(2), 265-273. https://doi.org/10.1249/mss.0000000000001099
Boullosa , D., Dragutinovic, B., Feuerbacher, J. F., Benítez-Flores, S., Coyle, E. F., y Schumann, M. (2022). Effects of short sprint interval training on aerobic and anaerobic indices: A systematic review and meta-analysis. Scandinavian Journal of Medicine & Science in Sports, 32(5), 810-820. https://doi.org/10.1111/sms.14133
Burgomaster , K. A., Cermak, N. M., Phillips, S. M., Benton, C. R., Bonen, A., y Gibala, M. J. (2007). Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292(5), R1970-R1976. https://doi.org/10.1152/ajpregu.00503.2006
Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., MacDonald, M. J., McGee, S. L., y Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. The Journal of physiology, 586(1), 151-160. https://doi.org/10.1113%2Fjphysiol.2007.142109
Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J., Bradwell, S. N., y Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of applied physiology, 98(6), 1985-1990. https://doi.org/10.1152/japplphysiol.01095.2004
Clemente , F. M., Soylu, Y., Arslan, E., Kilit, B., Garrett, J., van den Hoek, D., Badicu, G., y Silva, A. F. (2022). ¿Pueden el entrenamiento por intervalos de alta intensidad y los partidos de fútbol reducido ser eficaces para mejorar la condición física después del desentrenamiento? A parallel study design in youth male soccer players. PeerJ, 10, e13514. https://doi.org/10.7717/peerj.13514
Chung , J. W., Lee, O., y Lee, K. H. (2023). Estimation of maximal oxygen consumption using the 20 m shuttle run test in Korean adults aged 19-64 years. Science & Sports, 38(1), 68-74. https://doi.org/10.1016/j.scispo.2021.10.005
Daussin , F. N., Zoll, J., Dufour, S. P., Ponsot, E., Lonsdorfer-Wolf, E., Doutreleau, S., Mettauer, B., Piquard, F., Geny, B., y Richard, R. (2008). Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. American Journal of Physiology-Fisiología Regulativa, Integrativa y Comparativa, 295(1), R264-R272. https://doi.org/10.1152/ajpregu.00875.2007
Durnin , J. V., y Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. British journal of nutrition, 32(1), 77-97. https://doi.org/10.1079/bjn19740060
Flouris , A. D., Metsios, G. S., y Koutedakis, Y. (2005). Enhancing the efficacy of the 20 m multistage shuttle run test. British journal of sports medicine, 39(3), 166-170. https://doi.org/10.1136%2Fbjsm.2004.012500
Garber , C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., Nieman, B.A., Swain, D. P. (2011). Posición del Colegio Americano de Medicina del Deporte. Cantidad y calidad del ejercicio para desarrollar y mantener la aptitud cardiorrespiratoria, musculoesquelética y neuromotora en adultos aparentemente sanos: orientación para la prescripción de ejercicio. Medicina y ciencia en el deporte y el ejercicio, 43(7), 1334-1359. https://doi.org/10.1249/MSS.0b013e318213fefb
Gibala , M. J., Little, J. P., Van Essen, M., Wilkin, G. P., Burgomaster, K. A., Safdar, A., Raha, S., y Tarnopolsky, M. A. (2006). Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. The Journal of physiology, 575(3), 901-911. https://doi.org/10.1113%2Fjphysiol.2006.112094
Gillen , J. B., y Gibala, M. J. (2014). ¿Es el entrenamiento por intervalos de alta intensidad una estrategia de ejercicio eficiente en el tiempo para mejorar la salud y la forma física? Fisiología aplicada, nutrición y metabolismo, 39(3), 409-412. https://doi.org/10.1139/apnm-2013-0187
Grant , S., Corbett, K., Amjad, A. M., Wilson, J., y Aitchison, T. (1995). A comparison of methods of predicting maximum oxygen uptake. British journal of sports medicine, 29(3), 147-152. https://doi.org/10.1136/bjsm.29.3.147
Hood , M. S., Little, J. P., Tarnopolsky, M. A., Myslik, F., y Gibala, M. J. (2011). El entrenamiento a intervalos de bajo volumen mejora la capacidad oxidativa muscular en adultos sedentarios. Medicina y ciencia en el deporte y el ejercicio, 43(10), 1849-1856. https://doi.org/10.1249/mss.0b013e3182199834
Joo , C. H. (2018). Los efectos del desentrenamiento y el reentrenamiento a corto plazo en la aptitud física en jugadores de fútbol de élite. PloS one, 13(5), e0196212. https://doi.org/10.1371/journal.pone.0196212
Macpherson , R., Hazell, T. J., Olver, T. D., Paterson, D. H., y Lemon, P. (2011). Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exerc, 43(1), 115-122. https://doi.org/10.1249/mss.0b013e3181e5eacd
Matsuzaka , A., Takahashi, Y., Yamazoe, M., Kumakura, N., Ikeda, A., Wilk, B., y Bar-Or, O. (2004). Validity of the multistage 20-m shuttle-run test for Japanese children, adolescents, and adults. Pediatric exercise science, 16(2), 113-125. https://doi.org/10.1123/pes.16.2.113
Mendez-Cornejo , J., Gomez-Campos, R., Andruske, C. L., Sulla-Torres, J., Urra-Albornoz, C., Urzua-Alul, L., y Cossio-Bolanos, M. (2020). Consumo Máximo de Oxígeno: Validez del Test de Carrera de 20 Metros y Propuesta de Ecuaciones para su Predicción en Jóvenes. Revista de Fisiología del Ejercicio Online, 23(1). https://www.asep.org/asep/asep/JEPonlineFEBRUARY2020_Marco%20Cossio-Bolanos.pdf
Mujika , I., y Padilla, S. (2000). Desentrenamiento: Pérdida de las adaptaciones fisiológicas y de rendimiento inducidas por el entrenamiento. Parte II: Estímulo de entrenamiento insuficiente a largo plazo. Sports Medicine, 30(3), 145-154. https://doi.org/10.2165/00007256-200030030-00001
Rodas , G., Ventura, J. L., Cadefau, J. A., Cussó, R., y Parra, J. (2000). Un programa corto de entrenamiento para la mejora rápida del metabolismo aeróbico y anaeróbico. European journal of applied physiology, 82, 480-486. https://doi.org/10.1007/s004210000223
Sökmen , B., Witchey, R. L., Adams, G. M., y Beam, W. C. (2018). Efectos del entrenamiento de intervalos de sprint con recuperación activa frente al entrenamiento de resistencia en la potencia aeróbica y anaeróbica, la fuerza muscular y la capacidad de sprint. The Journal of Strength & Conditioning Research, 32(3), 624-631.
Tomlin , D., y Wenger, H. (2002). The relationships between aerobic fitness, power maintenance and oxygen consumption during intense intermittent exercise. Journal of science and medicine in sport, 5(3), 194-203. https://doi.org/10.1016/s1440-2440(02)80004-4
Vollaard , N., Metcalfe, R., y Williams, S. (2017). Efecto del número de sprints en una sesión de SIT sobre el cambio en el VO2máx: un metaanálisis. Medicina y ciencia en el deporte y el ejercicio, 49(6), 1147-1156. https://doi.org/10.1249/mss.0000000000001204
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2024 Zubeyde Aslankeser, Cebrail Altinsoy