Photosyntetic rates of Leonia glycycarpa and Compsoneura trianae in Arosemena Tola, amazon region, Ecuador
DOI:
https://doi.org/10.15517/wg6dnp91Keywords:
stomatal conductance, carbon dioxin, air molar flow, transpirationAbstract
Introduction. Photosynthesis in wild species has been little evaluated, so knowing its rates is important for the management of its production and possible exploitation. Objective. To determine the photosynthetic rates of Leonia glycycarpa and Compsoneura trianae Warb. in Arosemena Tola, Napo, Ecuador. Materials and methods. The study was carried out at the Amazon Experimental Research and Production Center in Arosemena Tola, Napo, Ecuador, in April 2023. Random sampling was carried out and with a portable environmental photosynthesis system, photosynthesis, transpiration, stomatal conductance, substomatal CO2, leaf temperature and molar air flow were recorded. The data were processed through the Table Curve 2D program. Results. Between 1:00 p.m. and 3:00 p.m., L. glycycarpa reached photosynthesis values of 3.5 mmol m-2 s-1, while C. trianae reached 1.4 mmol m-2 s-1. Between 07:00 and 08:00 h, the highest values were obtained in transpiration rate (1.4 and 1.5 mmol m-2 s-1 for L. glycycarpa and for C. trianae, respectively), stomatal water conductance (0.7 and 0.5 mol m-2 s-1 for L. glycicarpa and for C. trianae, respectively) and substomatic CO2. (460 vpm for L. glycicarpa and 500 vpm for C. trianae); the highest leaf temperature in C. trianae was at 08:00 h, while in L. glycyccarpa at 11:00 h. The mass flow between 10:00 and 13:00 h presented its minimum in C. trianae and in L. glycycarpa it represented its maximum. Conclusions. The photosynthesis rate of L. glycycarpa and C.trianae were lower than other species in the literature, due to cloudy conditions and tree cover. The concentration of the parameters: transpiration, stomatal water conductance and substomatal CO2, was higher in the first hours of the day, with higher humidity conditions.
Downloads
References
Abril-Saltos, R. V., Tapia-Tamayo, A. L., Pillco-Herrera, B. M., Quishpe-López, J. D., López-Adriano, K. P., & Sarabia-Guevara, D. P. (2024). Germinación y crecimiento de Porcelia mediocris y Compsoneura trianae en Arosemena Tola, Napo, Ecuador. Agronomía Mesoamericana, 351, Artículo 56371. https://dx.doi.org/10.15517/am.2024.56371
Abril-Saltos, R. V., Changoluisa-Vargas, D., Morell-Pérez, L., Toscano-Guatatoca, M. K., & Pérez-Tuti, B. T. (2023). Cobertura del suelo sobre la concentración de nutrientes en un agroecosistema en Napo, Ecuador. Agronomía Mesoamericana, 34(3), Artículo 54138. https://dx.doi.org/10.15517/am.2023.54138
Abril-Saltos, R. V., Villarroel-Gancino, C. Y., Ramos-Criollo, D. M., Pillco-Herrera, B. M., Quishpe-López, J. D., & López-Adriano, K. P. (2022). Germinación y crecimiento de Leonia glycycarpa en Arosemena Tola, Napo, Ecuador. Agronomía Mesoamericana, 33(1), Artículo 45656. https://dx.doi.org/10.15517/am.v33i1.45656
Bear, R.; Rintoul, D., Snyder, B., Smith-Caldas, M., Herren, C., & Horne, E. (2016 ). Principles of Biology. New Prairie Press. https://newprairiepress.org/textbooks/1
Boujenna, A., Martos Núñez, V., García del Moral, B., & García del Moral, L. F. (2022). Aplicación de las técnicas de medida de fluorescencia para el estudio de la fotosíntesis en la enseñanza práctica de Ecofisiología Vegetal. REIDOCREA, 11(14), 167-170. https://dx.doi.org/10.30827/Digibug.73455
Engineer, C. B., Hashimoto-Sugimoto, M., Negi J., Israelsson-Nordström, M., Azoulay-Shemer, T., Rappel, W. J., Iba, K., & Schroeder, J. I. (2016) CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions. Trends in Plant Science, 21(1),16-30. https://dx.doi.org/10.1016/j.tplants.2015.08.014
Falcón-Oconor, E., Cobas López, M., Bonilla Vichot, M., & Rodríguez Leyva, O. (2023). Crecimiento y desarrollo fotosintético de Swietenia mahagoni en sustratos inoculados con micorrizas arbusculares. Bosque (Valdivia), 44(2), 329-338. https://dx.doi.org/10.4067/s0717-92002023000200329
García Lozano, J., & Moreno Fonseca, L. P. (2016). Respuestas fisiológicas de Theobroma cacao L. en etapa de vivero a la disponibilidad de agua en el suelo. Acta Agronómica, 65(1), 44-50. https://doi.org/10.15446/acag.v65n1.48161
Guevara, J. E., Fernández, D. M., Palacios, W. A., Rivas, G., Vivar, L., Pitman A, N.C., Ulloa, Ulloa, C. Cerón, C., Neill, D.A., Oleas, N., Altamirano, P., & Ter Steege. H. (2019 diciembre 30). Árboles de la Amazonía Ecuatoriana. http://bndb.sisbioecuador.bio/bndb/checklists/checklist.php?cl=1&pid=1
Harrison, J. L., Reinmann, A. B., Maloney, A. S., Phillips, N., Juice, S. M., Webster, A. J., & Templer, P. H. (2020). Transpiration of Dominant Tree Species Varies in Response to Projected Changes in Climate: Implications for Composition and Water Balance of Temperate Forest Ecosystems. Ecosystems, 23(8), 1598–1613. https://dx.doi.org/10.1007/s10021-020-00490-y
Hou, X., Zhang, W., Du, T., Kang, S., & Davies, W. J. (2020). Responses of water accumulation and solute metabolism in tomato fruit to water scarcity and implications for main fruit quality variables. Journal of Experimental Botany, 71(4),1249–1264. https://dx.doi.org/10.1093/jxb/erz526
Higuita, D. H., Díaz Vasco, O., Urrera, L. M., & Cardona Naranjo, F. (2014). Guía ilustrada Flora Cañón del río Porce - Antioquia. Universidad de Antioquia, https://cu.epm.com.co/Portals/institucional/publicaciones-impresas/guia-ilustrada-canon-del-rio-porce-antioquia-flora.pdf
INaturalistEc. (2025, enero 31). Género Compsoneura. https://ecuador.inaturalist.org/taxa/273176-Compsoneura
Kiran, A., Sharma, P. N., Awasthi, R., Nayyar, H., Seth, R., Chandel, S. S., Siddique- Kadambot, H. M., Zinta, G., & Sharma, K. D. (2021). Disruption of carbohydrate and proline metabolism in anthers under low temperature causes pollen sterility in chickpea. Environmental and Experimental Botany, 188(1), Article 104500. https://dx.doi.org/10.1016/j.envexpbot.2021.104500
Klein, J., Rampim, L., Kestring, D., Guimarães, V. F., & Rodrigues, J. D. (2016). Influência de protetores físicos coloridos nas trocas gasosas em mudas de canafístula [ Peltophorum dubium (Spreng.) Taub.]. Ciência Florestal, 26(3), 797–809. https://doi.org/10.5902/1980509824208
López-Tolentino, G., Lira-Saldivar, R. H., & Méndez-Argüello, B. (2016). Medición de intercambio gaseoso, área foliar e índice de clorofila en plantas elicitadas con nanopartículas. En R. H. Lira-Saldivar, & B. Méndez-Argüello (Eds.), Agronano Tecnología: nueva frontera de la revolución verde (pp. 208-240) Consejo Nacional de Ciencia y Tecnología, & Centro de Investigación de Química Aplicada. https://ciqa.repositorioinstitucional.mx/jspui/bitstream/1025/149/1/Libro%20Agronano%20tecnologia.pdf
Marenco, R. A., De, J. F., & Vieira, G. (2001). Photosynthesis and leaf nutrient contents in Ochroma pyramidale (Bombacaceae). Photosynthetica, 39(4), 539–543. https://doi.org/10.1023/A:1015699927924
Matz, M. V., Treml, E. A., & Haller, B. C. (2020). Estimating the potential for coral adaptation to global warming across the Indo‐West Pacific. Global Change Biology, 26(6), 3473–3481. https://dx.doi.org/10.1111/gcb.15060
Melo, O., Fernández-Méndez, F., & Villanueva, B. (2016). Hábitat lumínico, estructura, diversidad y dinámica de los bosques secos tropicales del Alto Magdalena. Colombia Forestal, 20(1), 19-30. https://dx.doi.org/10.14483/udistrital.jour.colomb.for.2017.1.a02
Mosquera-Sánchez, L. P., Riaño-Herrera, N. M., Arcila-Pulgarín, J., & Ponce-Dávila, C. A. (1999) Fotosíntesis, respiración y fotorrespiración en hojas de café Coffea sp. Cenicafé, 50(3), 215-221. https://www.cenicafe.org/es/publications/arc050%2803%29215-221.pdf
Murchie, E. H., & Ruban, A. V. (2020). Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. The Plant Journal, 101(4), 885–896. https://dx.doi.org/10.1111/tpj.14601
Naizaque, J., García, G., Fischer, G., & Melgarejo, L. M. (2014). Relación Entre La Densidad Estomática, La Transpiración Y Las Condiciones Ambientales En Feijoa (Acca sellowiana [O. BERG] BURRET). Revista U.D.C.A Actualidad & Divulgación Científica, 17(1), 115-121. https://doi.org/10.31910/rudca.v17.n1.2014.946
Nepomuceno, A., & Alves, M. (2019). Flora da Usina São José, Igarassu, Pernambuco: Salicaceae e Violaceae. Rodriguesia, 70, Artigo e02352017. http://dx.doi.org/10.1590/2175-7860201970027
Nurmalisa, M., Tokairin, T., Takayama, K., & Inoue, T. (2021). Numerical study on improving uniformity of airflow in newly developed photosynthetic chamber. Environmental Control in Biology, 60(1), 23-32. https://dx.doi.org/10.2525/ecb.60.23
Ortuño-Tomás, A. M., Díaz-Expósito, L., & Del Río-Conesa, J. A. (2015). Evolución de la fisiología vegetal en los últimos 100 años. Revista Eubacteria, 34(1), 74-82 https://www.um.es/eubacteria/Fisiologia_vegetal_Eubacteria34.pdf
Padilla Benavides, D. P. (2019). Efecto de borde sobre la diversidad florística en la vía de acceso Villano A – Villano B, Pastaza-Ecuador. [Tesis de licenciatura, Pontificia Universidad Católica del Ecuador]. Repositorio Nacional de la Pontificia Universidad Católica del Ecuador. https://repositorio.puce.edu.ec/handle/123456789/20728
Pérez-Peña, P. E., Ramos-Rodríguez, C., Díaz-Alván, J., Zárate-Gómez, R., Mejía-Carhuanca, K., Núñez-Pérez, C., Bardales-Alvites, C., Gallardo-Gonzales, D., Guerra-Ruiz, D., & Acho-Zevallos, G. W. (2019). Biodiversidad en las cuencas del Napo y Curaray, Perú. Instituto De Investigaciones De La Amazonía Peruana.
Pino, V. E., Montalván, D. I., Vera, M. A., & Ramos, F. L. (2019). La conductancia estomática y su relación con la temperatura foliar y humedad del suelo en el cultivo del olivo (Olea europaea L.), en periodo de maduración de frutos, en zonas áridas. La Yarada, Tacna, Perú. Idesia (Arica), 37(4), 55-64. https://dx.doi.org/10.4067/S0718-34292019000400055
Quero, J., Marañón, T., & Villar, R. l. (2013). Tasas de fotosíntesis en plántulas de alcornoque y roble en distintos micrositios dentro del sotobosque. Almoraima, 31(1), 101-110. http://hdl.handle.net/10261/55721
Systat Sotfware. (2008). Table Curve 2D (versión 5.01.3) [software de ordenador]. Systat https://tablecurve-2d.informer.com/versions/
Von Caemmerer, S., & Baker, N. (2007). The biology of transpiration. From guard cells to globe. Plant Physiology, 143(1), 3. https://doi.org/10.1104/pp.104.900213
Downloads
Published
License
Copyright (c) 2025 Ricardo Abril Saltos, Keyla Dayana Zambrano Chongo, Lisbeth Stefania Urquizo Moreta, Edith Liliana Shiguango Alvarado, Vivian Nicole Urrutia Ilicachi (Autor/a)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).





















