Predictive model of the severity of leaf blight by Cercospora kikuchii using meteorological variables

Authors

DOI:

https://doi.org/10.15517/am.2023.54430

Keywords:

fungus, pathology, plague, Glycine max

Abstract

Introduction. In the integrated management of diseases, it is important to incorporate elements such as economic damage thresholds, monitoring, and risk forecasting systems, which constitute tools to define d control strategies. Objective. To develop a predictive model of the severity of Cercospora leaf blight (TFC) using meteorological variables in the northern region of Buenos Aires Province, Argentina. Materials and methods. Data on the incidence and severity of TFC corresponding to five soybean production cycles (2013-2017) in Pergamino, Buenos Aires, at different reproductive stages (R1 to R7) were available. The dependent variable was the probability of occurrences of categorized levels of the rate of increase (TI) in TFC severity caused by C. kikuchii. Daily maximum and minimum temperature, precipitation, and relative humidity were recorded. The non-parametric Kendall Tau-b correlation coefficient was calculated between the binary categorized levels of TI in TFC severity and meteorological variables. Results. Meteorological variables with the highest correlation in relation to TFC TI were those related to relative humidity [Days with relative humidity (HR) >76 % (DHR), days with maximum temperature (Tmax) <28 °C, minimum temperature (Tmin) >15 °C, and HR >76 % (DHRT), days with Tmax <28 °C, Tmin >15 °C, rainfall >0.5 mm, and HR >75 %(MOJro)]. The inclusion of a thermal variable (on days where Tmax <28 °C, GDTmax: ∑maximum temperature-28 °C) was important for the adjustment of the predictive model. Conclusion. A predictive model for TFC severity was developed, which included two meteorological variables, one related to days of relative humidity and another thermal related to a maximum temperature threshold for disease development. To validate and strengthen the proposed model, it is necessary to have more severity data over the years.

Downloads

Download data is not yet available.

References

Agrios, G. N. (2005). Plant pathology (5th Ed.). Elsevier Academic Press.

Bombelli, E. C. (2011). Modelado para la predicción de enfermedades en cultivos de alto valor comercial [Tesis de Maestría, Universidad Tecnológica Nacional]. Universidad Tecnológica Nacional. http://www.edutecne.utn.edu.ar/tesis/modelado_prediccion_enfermedades.pdf

Carmona, M., Moschini, R., Cazenave, G., & Sautua, F. (2010). Relación entre la precipitación registrada en estados reproductivos de la soja y la severidad de Septoria glycines y Cercospora kikuchii. Tropical Plant Pathology, 35(2), 71–78. https://doi.org/10.1590/s1982-56762010000200001

De Wolf, E. D., & Isard, S. A. (2007). Disease cycle approach to plant disease prediction. Annual Review of Phytopathology, 45(1), 203–220. https://doi.org/10.1146/annurev.phyto.44.070505.143329

El Jarroudi, M., Kouadio, L., Bock, C. H., El Jarroudi, M., Junk, J., Pasquali, M., Maraite, H., & Delfosse, P. (2017). A threshold-based weather model for predicting stripe rust infection in winter wheat. Plant Disease, 101(5), 693–703. https://doi.org/10.1094/pdis-12-16-1766-re

Fehr, W. R., Caviness, C. E., Burmood, D. T., & Pennington, J. S. (1971). Stage of development descriptions for soybeans, Glycine max (L.) Merrill 1. Crop Science, 11(6), 929–931. https://doi.org/10.2135/cropsci1971.0011183x001100060051x

Henderson, D., Williams, C. J., & Miller, J. S. (2007). Forecasting late blight in potato crops of Southern Idaho using logistic regression analysis. Plant Disease, 91(8), 951–956. https://doi.org/10.1094/pdis-91-8-0951

Hughes, G, McRoberts, N., Madden, L. V., & Nelson, S. C. (1997). Validating mathematical models of plant-disease progress in space and time. Mathematical Medicine and Biology, 14(2), 85–112. https://doi.org/10.1093/imammb/14.2.85

Lavilla, M., & Ivancovich, A. (2021). Relación entre enfermedades y rendimiento de granos de soja. Agronomía Mesoamericana, 32(2), 141–148. https://doi.org/10.15517/am.v32i2.44057

Lavilla, M., Ivancovich, A. J., & Díaz-Paleo, A. (2021). Diagrammatic scale for assessment the severity of Cercospora leaf blight on soybean (Glycine max) leaflets. Agronomía Mesoamericana, 33(1), Article 43338. https://doi.org/10.15517/am.v33i1.43338

Lavilla, M., Ivancovich, A., & Díaz-Paleo, A. (2022). Tizón Foliar y la Mancha Púrpura de la semilla causados por Cercospora kikuchii en soja (Glycine max L. Merr.). Agronomía Mesoamericana, 33(3), Artículo 48944. https://doi.org/10.15517/am.v33i3.48494

March, G. J., Oddino, C. M., & Marinelli, A. D. (2010). Manejo de enfermedades de los cultivos según parámetros epidemiológicos (1ª ed.). Biglia Impresores.

Moschini, R. C., Sisterna, M. N., & Carmona, M. A. (2006). Modelling of wheat black point incidence based on meteorological variables in the southern Argentinean Pampas region. Australian Journal of Agricultural Research, 57(11), 1151–1156. https://doi.org/10.1071/ar05275

Montes, C., Ghulam Hussain, S., & Krupnik, T. J. (2022). Variable climate suitability for wheat blast (Magnaporthe oryzae pathotype Triticum) in Asia: results from a continental-scale modeling approach. International Journal of Biometeorology, 66(11), 2237–2249. https://doi.org/10.1007/s00484-022-02352-9

Yadav, R., Bharti, O., Pandya, R. K., Thakur, M. P., & Yadav, A. (2016). Correlation study of individual meteorological parameters and disease severity for prediction of pearl millet blast. International Journal of Current Research, 8(11), 41580–41582. http://www.journalcra.com/article/correlation-study-individual-meteorological-parameters-and-disease-severity-prediction-pearl

Published

14-07-2023

How to Cite

Lavilla, M., Martinez, M., Ivancovich, A., & Díaz-Paleo, A. (2023). Predictive model of the severity of leaf blight by Cercospora kikuchii using meteorological variables. Agronomía Mesoamericana, 34(3), 54430. https://doi.org/10.15517/am.2023.54430

Similar Articles

1-10 of 60

You may also start an advanced similarity search for this article.