Influence of arbuscular mycorrhiza consortia and phosphorus fertilization in the yield components of piquin chili
DOI:
https://doi.org/10.15517/5n9xzz35Keywords:
wild chili, Chihuahuan Desert, Fertility, native maycorrhiza, yieldAbstract
Introduction. The piquin chili (Capsicum annuum L. var. glabriusculum) is a wild species of typical red fruit found in the mountains north of Mexico, and it is still undergoing domestication. To understand the role of arbuscular mycorrhizal fungi and phosphorus fertilization is essential in Mexico to make sustainable production of piquin chilli. Objective. To compare the influence of three consortia of arbuscular mycorrhiza and two control groups of phosphorus fertilization on yield components. Materials and methods. The study was conducted in the summer of 2021 in Mexico. Three mycorrhizal consortia were utilized in the control group with phosphorus fertilization, with 12 observations. The analyzed variables were plant height (cm), leaf number, stem diameter, fruit number, fruit harvest weight, unitary fruit weight, and fruit phosphorus content. The experiment was conducted using a completely randomized design. The statistical analysis of the collected data was performed using SPSS version 25, employing analysis of variance (ANOVA). A significance of 5% was used, and the means were compared with a Tukey test. Results. The mycorrhizal consortia improved significantly over the control plants (22 mg L-1 de P) in six out of seven agronomic variables studied (the number of leaves, plant height, and stem diameter, and the yield (number of fruits, harvest weight, and unitary weight of fruit). The three fungal consortia contributed to the yield variables, as the control plants had double the dosage of phosphorus. Conclusions. The native and commercial mycorrhizal fungi favored the variables of yield components evaluated. They contributed to their fruit P content, like fertilized plants with phosphorus.
Downloads
References
Ahmed, S., Roro, A. G., Beshir, H. M., & Haile, A. (2023). Physiological growth, yield, and quality responses of hot pepper due to shade level. International Journal of Vegetable Science, 29(5), 375–402. https://doi.org/10.1080/19315260.2023.2233955
Akande, T. Y., Erinle, K. O., & Bitire, T. D. (2023). Soil properties and growth of yellow bell pepper (Capsicum annuum) as influenced by compost and arbuscular mycorrhizal fungi. Eurasian Journal of Soil Science, 12(2), 159-168. https://doi.org/10.18393/ejss.1219669
Akhoundnejad, Y., & Baran, S. (2023). Boosting drought resistance in pepper (Capsicum annuum L.) with the aid of arbuscular mycorrhizal fungi and key phytohormones. Horticultural Science, 58(11), 1358-1367. https://doi.org/10.21273/HORTSCI17370-23
Alcala-Rico, J. S. G., Ramirez-Merz, M., Maldonado-Moreno, N., Borja-Bravo, M., Camposeco-Montejo, N., & Lopez-Benitez, A. (2023). Variación morfológica en frutos de genotipos de chile piquín (Capsicum annuum var. Glabriusculum) del Noreste y Centro de México. Ecosistemas y Recursos Agropecuarios, 10(2): articulo 3482. https://doi.org./10.19136/era.a10n2.3482
Angulo-Castro, A., Ferrera-Cerrato, R., Alarcon, A., Almaraz-Suarez, J. J., Delgadillo-Martinez, J., Jimenez-Fernandez, M., & Garcia-Barradas, O. (2021). Improved growth of bell pepper (Capsicum annuum) plants by inoculating arbuscular mycorrhizal fungi and beneficial rhizobacteria. Scientia Fungorum, 51, article 1299. https://doi.org/10.33885/sf.2021.51.1299
Canpolat, Ş., & İşlek, C. (2023). The effect of arbuscular mycorrhiza on physiological and biochemical parameters and capsaicinoid production in Capsicum annuum L.: A comparative study of extraction methods and solvents. Archives of Biological Sciences, 75(3), 327–339. https://doi.org/10.2298/abs230601027c
Cao, M. A., Wang, P., Hashem, A., Wirth, S., Abd_Allah, E. F., & Wu, Q. S. (2021). Field inoculation of arbuscular mycorrhizal fungi improves fruit quality and root physiological activity of citrus. Agriculture, 11(12), Article 1297. https://doi.org/10.3390/agriculture11121297
Dzib-Ek, M. G., Andueza-Noh, R. H., Garruña, R., Zavala-León, M. J., Villanueva-Couoh, E., Rivera-Hernández, B., Torres-Cab, W. J., Alvarado-López, C. J., & Ruíz-Santiago, R. R. (2025). Influence of Fruit Ripeness on Physiological Seed Quality of Maax Pepper (Capsicum annuum L. var. glabriusculum). Agronomy, 15(3), Article 747. https://doi.org/10.3390/agronomy15030747
Falcón Oconor, E., Rodríguez Leyva, O., & Rodríguez Matos, Y. (2015). Aplicación combinada de micorriza y FitoMas-E en plantas de Talipariti elatum (Sw.) Fryxell (Majagua). Cultivos Tropicales, 36(4), 35-42. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1075
Fasusi, O. A., Cruz, C., & Babaloa, O. O. (2021). Agricultural sustainability: microbial biofertilizers in rhizosphere management. Agriculture, 11(2), Article 163. https://doi.org/10.3390/agriculture11020163
Franczuk, J., Tartanus, M., Rosa, R., Zaniewicz-Bajkowska, A., Dębski, H., Andrejiová, A., & Dydiv, A. (2023). The effect of mycorrhizal fungi and various mineral fertilizer levels on the growth, yield, and nutritional value of sweet pepper (Capsicum annuum L.). Agriculture, 13(4), Article 857. https://doi.org/10.3390/agriculture13040857
Goswami, S. K., Kashyap, A. S., Kumar, R., Gujjar, R. S., Singh, A., & Manzar, N. (2024). Harnessing rhizospheric microbes for eco-friendly and sustainable crop production in saline environments. Current Microbiology, 81(1), Article 14. https://doi.org/10.1007/s00284-023-03538-z
Guardiola-Márquez, C. E., Pacheco, A., Mora-Godínez, Schüßler, A., Gradilla-Hernández, M. S., & Senés-Guerrero, C. (2022). Septoglomus species dominate the arbuscular mycorrhiza of five crop plants in an arid region of northern Mexico. Symbiosis, 87(2), 93-106. https://doi.org/10.1007/s13199-022-00851-2
Hayano‐Kanashiro, C., Gámez‐Meza, N., & Medina‐Juárez, L. Á. (2016). Wild pepper Capsicum annuum L. var. glabriusculum: Taxonomy, plant morphology, distribution, genetic diversity, genome sequencing, and phytochemical compounds. Crop Science, 56(1), 1-11. https://doi.org/10.2135/cropsci2014.11.0789
Hernández-Acosta, E., Trejo-Aguilar, D., Rivera-Fernández, A., & Ferrera-Cerrato, R. (2020). La micorriza arbuscular como biofertilizante en cultivo de café. Terra Latinoamericana, 38(3), 613-628. https://doi.org/10.28940/terra.v38i3.659
Hu, J., Hou, S., Cai, P., Minghui, L., Cheng, Z., Wu, F., & Lin, X. (2023). Intercroppig with maize (Zea mays L.) enhanced the suppression of pepper (Capsicum annuum L.) Phytophthora blight by arbuscular mycorrhizal fungi. Journal of Soils and Sediments, 23(2), 891-901. https://doi.org/10.1007/s11368-022-03351-4
Khanum, S., Al-Tawaha, A. R. M., Abu-Zaitoon, Y., Al-Tawaha, A. R., Alatrash, H., Rauf, A., Karnwal, A., Dey, A., Shatnawi M., Thangadurai, D., Sangeetha, J., Islam, S., Imram., Amanullah., Khalid, S., Saranraj, P., & Gunal, E. (2024). Mycorrhizal role in phosphorus metabolism. In J. Sangeetha, A. R. M. Al-Tawaha, & D. Thangadurai (Eds.), Mycorrhizal technology: Managing plant stress and mitigating climate change using mycorrhizae (pp. 1987-2008). Apple Academic Press.
Koziol, L., & Bever, J. D. (2023). Crop productivity boosters: Native mycorrhizal fungi from an old-growth grassland benefits tomato (Solanum lycopersicum) and pepper (Capsicum annuum) varieties in organically farmed soils. Microorganisms, 11(8), Article 2012. https://doi.org/10.3390/microorganisms11082012
Liu, Y., He, B., Xiao, Q., Wang, X., Lin, X., & Hu, J. (2023). Earthworms facilitated pepper (Capsicum annuum L.) growth via enhancing the population and function of arbuscular mycorrhizal fungi in a low-density polyethylene-contaminated soil. Chemical and Biological Technologies in Agriculture, 10(1), Article 115. https://doi.org/10.1186/s40538-023-00493-6
López-Moreno, H., Basurto-Garduño, A. C., Torres-Meraz, M. A., Diaz-Valenzuela, E., Arellano-Arciniega, S., Zalapa, J., Sawers, R. J. H., Cibrián-Jaramillo, A., & Diaz-García, L. (2023). Genetic analysis and QTL mapping of domestication-related traits in chili pepper (Capsicum annuum L.). Frontiers in Genetics, 14, Article 1101401. https://doi.org/10.3389/fgene.2023.1101401
Maiti, R., Rodríguez, H. G., & Valencia-Narváez, R. I. (2015). A study on autoecology and ecophysiology of chile piquin (Capsicum annuum Aviculare Dierb), a wild chilli of high medicinal and commercial value in Northeast Mexico. International Journal of Bio-Resource & Stress Management, 6, 292-299. https://doi.org/ 10.5958/0976-4038.2015.00045.7
Megchún-García, J. V., Rebolledo-Martínez, A., Angel-Pérez, A. L. D., Nataren-Velázquez, J., & Capetillo-Burela, Á. (2024). Chile piquín (Capsicum annuum var. Aviculare) establecido en un revestimiento de plástico y arreglos espaciales. Ecosistemas y Recursos Agropecuarios, 11(3), Artículo 3984 https://era.ujat.mx/index.php/rera/issue/view/101
Mendoza-Villarreal, R., Robledo-Torres, V., Pérez-Rodríguez, M. A., Guillén-Enríquez, R. R., Martínez-Cueto, V., & Paredes-Jácome, J. R. (2021). Impacto de cubierta, ecotipo y endomicorriza en morfología y calidad de chile piquín. Revista Mexicana de Ciencias Agrícolas, 12(2), 193-204. https://doi.org/10.29312/remexca.v12i2.2847
Michels-Mighty, J., Rodríguez-Fernández, P., & Montero-Limonta, G. (2020). Fertirriego e inoculación con Glomus cubense sobre crecimiento y productividad del pimiento en cultivo protegido: Array. Maestro y Sociedad, 17(2), 218-232. https://maestroysociedad.uo.edu.cu/index.php/MyS/article/view/5159
Mrid, R. B., Benmrid, B., Hafsa, J., Boukcim, H., Sobeh, M., & Yasri, A. (2021). Secondary metabolites as bioestimulant and bioprotectant agents: A review. Science of The Total Environment, 777, Article 146204. https://doi.org/10.1016/j.scitotenv.2021.146204
Mukherjee, A., Singh, S., Gaurav, A. K., Chouhan, G. K., Jaiswal, D. K., Pereiro, A. P. D. A., Passari, A. K., Abdel-Azeem, A. M., & Verma, J. P. (2022). Harnessing of phytomicrobiome for developing potential bioestimulant consortium for enhancing the productivity of chickpea and soil health under sustainable agriculture. Science of The Total Environment, 836, Article 155550. https://doi.org/10.1016/j.scitotenv.2022.155550
Murillo-Amador, B., Rueda-Puente, E. o. Troyo-Dieguez, E. Córdoba-Matson, M. V., Hernández-Montiel, L. G., & Nieto-Garibay, A. (2015). Baseline study of morphometric traits of wild Capsicum annuum growing near two biosphere reserves in the peninsula of Baja California for future conservation management. BMC. Plant Biology, 15(1): 118. https://doi.org/10.1186/s12870-015-0505-6
Ortas, I. (2018). Role of mycorrhizae on mineral nutrition of fruit trees. Acta Horticulturae, 1217(34), 271-284. https://doi.org/10.17660/ActaHortic.2018.1217.34
Osuna-Ávila, P., Flores-Margez, J. P., & Corral-Díaz, B. (2021). Dinámica estacional de micorrizas arbusculares y hongos septados endofíticos oscuros en asociación con raíces de Solanum elaeagnifolium Cav. Botanical Sciences, 99(2), 291-304. https://doi.org/10.17129/botsci.2769
Osuna-Rodríguez, J. M., Hernández-Verdugo, S., Osuna-Enciso, T., Pacheco-Olvera, A., Parra-Terraza, S., Romero-Higareda, C. E., & Retes-Manjarrez, J. E. (2023). Variations in salinity tolerance in wild pepper (Capsicum annuum L var. glabriusculum) populations. Chilean Journal of Agricultural Research, 83(4), 432-443. https://doi.org/10.4067/s0718-58392023000400432
Pal, S. C., Hossain, M. B., Mallick, D., Bushra, F., Abdullah, S. M. R., Dash, P. K., & Das, D. (2024). Combined use of seaweed extract and arbuscular mycorrhizal fungi for alleviating salt stress in bell pepper (Capsicum annuum L.). Scientia Horticulturae, 325, Article 112597. https://doi.org/10.1016/j.scienta.2023.112597
Paredes-Jácome, J. R., Mendoza-Villarreal, R., Pérez-Rodríguez, M. A., Robledo-Torres, V., & Moreno-Limón, S. (2019). Agronomic behavior of piquin pepper ecotypes under photoselective covers. Ingeniería Agrícola y Biosistemas, 11(1), 53–67. https://doi.org/10.5154/r.inagbi.2018.05.011
Pereira, J. A. P., Vieira, I. J. C., Freitas, M. S. M., Lima, T. C., Mendoca, L. V. P., & Goncalves, Y de S. (2024). Effects of phosphorus and arbuscular mycorrhizal fungi on the quality of chili pepper fruits. Journal of Plant Nutrition, 47(8), 1319-1330. https://doi.org/10.1080/01904167.2024.2308192
Pérez-Velasco, E. A., Mendoza-Villarreal, R., Sandoval-Rangel, A., de la Fuente, M. C., Robledo-Torres, V., & Valdez-Aguilar, L. A. (2019). Evaluación del uso de endomicorrizas y Azospirillum sp. en la productividad y calidad nutracéutica de chile morrón (Capsicum annuum) en invernadero. Información Técnica Económica Agraria, 115(1), 18-30. https://recyt.fecyt.es/index.php/ITEA/article/view/58577
Pulungan, A. S. S., Sari-Rangkuti, M. N., Imelda, Dlm, K. H., & Sativa-Heriyan, W. N. (2023). Pengaruh Pemberian Perbedaan Dosis Pupuk Mikoriza Terhadap Pertumbuhan Cabai Rawit (Capsicum frutescens) di Polibag. Jurnal Pendidikan, Sais Dan Teknologi, 4(1), 903-907. http://jurnal.minartis.com/index.php/jpst/
Putra, S. S., Putra, E. T. S., & Widada, J. (2020). The effects of types of manure and mycorrhizal applications on sandy soils on the growth and yield of curly red chili (Capsicum annuum L.). Caraka Tani: Journal of Sustainable Agriculture, 35(2), 258-267. https://doi.org/10.20961/carakatani.v35i2.34971
Ramírez-Novoa, U. I., Cervantes-Ortiz, F., Montes-Hernández, S., Raya-Pérez, J. C., Cibrian-Jaramillo, A., & Andrio-Enríquez, E. (2018). Diversidad morfológica del chile piquín (Capsicum annuum L. var. glabriusculum) de Querétaro y Guanajuato, México. Revista Mexicana de Ciencias Agrícolas, 9(6), 1159-1170.
Reyes-Acosta, D. J., Álvarez-Parrilla, E., Jiménez-Alvarado, R., Campos-Montiel, R. G., & Hernández-Fuentes, A. D. (2019). Actividad antioxidante de los extractos de chiltepín (Capsicum annum) cultivados bajo redes de colores. Boletín de Ciencias Agropecuarias del ICAP, 5(10), 1-5. https://doi.org/10.29057/icap.v5i10.4371
Ruiz-Núñez, N. D, Vásquez-Dávila, M. A., Manzanero-Medina, G. I., & Flores-Manzanero, A. (2024). Nurse plants, soil nutrients, and avian seed dispersal of wild chili peppers in a semiarid valley of Southern Mexico. Journal of Arid Environments, 227, Article 105297. https://doi.org/10.1016/j.jaridenv.2024.105297
Safira, C. N., & Helmi, H. (2024). Effectiveness of inoculation types and dosages of arbuscular mycorrhiza fungi (AMF) on the growth of perintis chili variety (Capsicum annuum L.) on Entisol soil. IOP Conference Series: Earth and Environmental Science, 1297(1), Article 012003. https://doi.10.1088/1755-1315/1297/1/012003
Sánchez-Sánchez, A. A., Salcedo-Martínez, S. M., Mendoza-Villarreal, R., Pinedo-Espinoza, J. M., & Moreno-Limón, S. (2018). Aislamiento e Identificación de Micorrizas arbúsculares (MA) Asociadas a la rizósfera del chile piquín (Capsicum annuum var. aviculare L.). Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 3, 86-91. http://eprints.uanl.mx/23682/1/57.pdf
Sangeetha, J., Al-Tawaha, A. R. M., & Thangadurai, D. (Eds.). (2024). Mycorrhizal technology: Managing plant stress and mitigating climate change using mycorrhizae. Apple Academic Press.
Senés-Guerrero, C., Giménez, S., Pacheco, A., Gradilla-Hernández, M. S., & Schüßler, A. (2020). New MiSeq based strategy exposed plant-preferential arbuscular mycorrhizal fungal communities in arid soils of Mexico. Symbiosis, 81(3), 235-246. https://doi.org/10.1007/s13199-020-00698-5
Singh, S., Singh, B. K., Singh, A. K., & Gangwar, V. (2023). Effect of various mycorrhizal strains on growth and yield attributes of chilli (Capsicum annuum L.) cv. Kashi Anmol. The Pharma Innovation Journal, 12(6), 4503-4507. https://www.thepharmajournal.com/archives/?year=2023&vol=12&issue=6&page=52
Subhash, A. P., Veena, S. S., Makeshkumar, T., & Anith, K. N. (2025). Piriformospora indica and arbuscular mycorrhizal fungus suppress fungal root rot and mosaic diseases of cassava. Symbiosis, 95, 241-254. https://doi.org/10.1007/s13199-025-01044-3
Sun, W., & Shahrajabian, M. H. (2023). The application of arbuscular mycorrhizal fungi as microbial bioestimulant, sustainable approaches in modern agriculture. Plants, 12(17), Article 3101. https://doi.org/10.3390/plants12173101
Tanwar, A., Aggarwal, A., Saini, I., Kumar, T., Kumar, M., & Pichardo, S. T. (2025). Diversity and distribution of arbuscular mycorrhizal fungi associated with vegetable crops in Haryana, India. Eurasian Journal of Soil Science, 14(1), 46-57. https://doi.org/10.18393/ejss.1574580
Torres-Moran, M. I., Rodríguez-Guzmán, E., Velasco-Ramírez, A. P., Escoto-Delgadillo, M., Riojas-López, M. E. Duran-Puga, N., & Lepiz-Lidefonso, R. (2022). Estudio preliminar de identificación a nivel molecular de ecotipos de chile piquín. ECUCBA, 9(18), 192-197. https://doi.org/10.32870/ecucba.vi18.254
Toxqui-Tapia, R., Penaloza-Ramirez, J. M., Pacheco-Olvera, A., Albarran-Lara, A. L., & Oyama, K. (2022). Genetic diversity and genetic structure of Capsicum annuum L., from wild, backyard and cultivated populations in a heterogeneous environment in Oaxaca, Mexico. Polibotanica, 53(27), 87-103. https://doi.org/10.18387/polibotanica.53.6
Tuhuteru, A., Rumbiak, R. E., & dan Irianti, I. (2024). Effects of mycorrhizal on the growth and yield of cayenne pepper (Capsicum frutescens L.). Jurnal IImu Pertanian Indonesia, 29(3), 418-429. https://doi.org/10.18343/jipi.29.3.418
Valdovinos-Nava, W., Chan-Cupul, W., Hernández-Ortega, H. A., & Ruíz-Sánchez, E. (2020). Effects of biological and mineral fertilization on the growth, nutrition, and yield of Capsicum chinense under greenhouse conditions. Journal of Plant. Journal on Plant Nutrition, 43(15), 2286-2298. https://doi.org/10.1080/01904167.2020.1771586
Watson-Guido, W., & Rivera-Méndez, W. (2025). Comunicación en las asociaciones simbióticas: mecanismos entre hongos micorrícicos arbusculares, plantas y organismos edáficos. Agronomía Mesoamericana, 36(1), Artículo 57100. https://doi.org/10.15517/am.2024.57100
Yakasai, U. A., & Rabiu, S., (2025). The impact of arbuscular mycorrhizal fungal inoculants on growth, nutrients, and yield of vegetable plants: a review. FUDMA Journal of Sciences, 9(3), 215-223. https://doi.org/10.33003/fjs-2025-0903-3353
Zhao, R., Guo, W., Bi, N., Guo, J., Wang, L., Zhao, L., & Zhang, J. (2015). Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Applied Soil Ecology, 88, 41-49. https://doi.org/10.1016/j.apsoil.2014.11.016
Ziane, H., Hamsa, N., & Meddad-Hamsa, A. (2021). Arbuscular mycorrhizal fungi and fertilization rates optimize tomato (Solanum lycopersicum L.) growth and yield in a Mediterranean agroecosystem. Journal of the Saudi Society of agricultural Sciences, 20(7), 454-458. https://doi.org/10.1016/j.jssas.2021.05.009
Downloads
Published
Data Availability Statement
NA
License
Copyright (c) 2025 Pedro Osuna Ávila, Sergio Alan Aldana-Galvez, Joaquin Rodrigo-Garcia, Juan Pedro Flores-Margez, Baltazar Corral-Diaz (Autor/a)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).





















