Effectiveness of mycorrhizal inoculation on sweet potato nutrition and NPK fertilization in Cuban Cambisols

Authors

DOI:

https://doi.org/10.15517/z8vtj702

Keywords:

arbuscular mycorrhizae, Ipomea batatas, mycorrhizal symbiosis, agronomic efficiency, yields

Abstract

Introduction. Sweet potato has high nutritional requirements. It is a mycotroph crop, and in Cuba, its production is limited by the low availability of fertilizers. Objectives. To evaluate the effectiveness of mycorrhizal inoculation on the nutrition and specific supply of primary macronutrients in two sweet potato cultivars over two planting seasons. Materials and methods. Six fertilization response curve experiments were conducted on Eutric Cambisols soils in Santo Domingo, Villa Clara, Cuba, from 2014 to 2016, with two experiments for each macronutrient (nitrogen, phosphorus, and potassium), one during the rainy period and one during the low-rainfall period. Each experiment evaluated five doses of the target macronutrient, with and without inoculation of Rhizoglomus irregulare / INCAM-11, under a fixed background supply of the other two macronutrients. Trials were conducted on the cultivars INIVIT B-2-2005 and CEMSA 78-354 using a split-plot design with four replicates, repeated twice. Yields, macronutrient concentrations, colonization frequency, spores, and fertilizer agronomic efficiency were evaluated. Results. Positive and direct effects of inoculation on the yields and nutrition of each macronutrient were found. Inoculation required lower doses of fertilizers to guarantee yields and macronutrient concentrations equal to or higher than those obtained with mineral fertilizers alone and with a higher fertilizer agronomic efficiency. Mycorrhizal performance depended on the doses of macronutrients applied. A high and direct relationship was established between the colonization frequency and the yield of the inoculated cultivars, with higher values of both variables in the rainy period. The cultivars always behaved similarly to each other. Conclusions. INCAM-11 inoculation of sweet potato cultivars acted directly and positively on the nutrition and fertilization efficiency of each NPK macroelement. The fertilizer doses for these inoculated cultivars growing on Eutric Cambisols were 60, 50, and 75 kg ha-1 of N, P2O5, and K2O for both planting seasons.

Downloads

Download data is not yet available.

References

Antil, R. S., & Raj, D. (2020). Integrated nutrient management for sustainable crop production and improving soil health. In R. S. Meena (Ed.), Nutrient dynamics for sustainable crop production (pp. 67-101). Springer. https://doi.org/10.1007/978-981-13-8660-2_3

Basiru, S., Ait Si Mhand, K., & Hijri, M. (2023). Disentangling arbuscular mycorrhizal fungi and bacteria at the soil-root interface. Mycorrhiza, 33, 119-137. https://doi.org/10.1007/s00572-023-01107-7

Baskar, K., Gabhane, V. V., De, N., Vasanthi, B. G., Kundu, S., Sanjivkumar, V., Kumara, B. H., Ramesha, M. N., Manikandan, M., & Sharma, R. (2022). Integrated nutrient management practice for rainfed crops. Indian Farming, 72(11), 46-49. https://epubs.icar.org.in/index.php/IndFarm/article/view/131386

Bunn, R. A., Corrêa, A., Joshi, J., Kaiser, C., Lekberg, Y., Prescott, C. E., Sala, A., & Karst, J. (2024). What determines transfer of carbon from plants to mycorrhizal fungi? New Phytologist, 244(4), 1199-1215. https://doi.org/10.1111/nph.20145

Camejo Hernández, M. (2016). Efecto de dosis de nitrógeno, fósforo y potasio combinadas con micorrizas en yuca (Manihot esculenta Crantz) [Tesis de maestría en Agricultura Sostenible, Universidad Central Marta Abreu de Las Villas]. Repositorio Digital Universidad Central Marta Abreu. https://dspace.uclv.edu.cu/handle/123456789/7324

Corrêa, A., Cruz, C., & Ferrol, N. (2015). Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown. Mycorrhiza, 25, 499-515. https://doi.org/10.1007/s00572-015-0627-6

Departamento de Suelos y Fertilizantes. (2020). Manual práctico para uso de bioproductos y fertilizantes líquidos. Ministerio de la Agricultura de Cuba. Recuperado diciembre 15, 2024 de https://es.scribd.com/document/501110234/Manual Biofertilizantes y Fertilizantes Liquidos V 10-1-2020 | PDF | Fertilizante | Siembra

Espinosa-Cuéllar, A., Rivera-Espinosa, R., Ruíz-Martínez, L., Espinosa-Cuéllar, E., & Lago-Gato, Y. (2019). Manejo de precedentes inoculados con HMA para micorrizar eficientemente el boniato Ipomoea batatass (L.) Lam en sucesión. Cultivos Tropicales, 40(2), Artículo e03. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1508/html

Espinosa-Cuéllar, A., Rivera, R., Varela-Nualles, M., & Pérez-Díaz, A. (2023). Mycorrhizal inoculants on sweet potato (Ipomoea batatas) in Eutric Cambisol soils of Cuba. Agronomía Mesoamericana, 34(3), Article 53725. https://doi.org/10.15517/am.2023.53725

Fernandez Suárez, K. (2012). Establecimiento de un sistema eficiente de micorrización in vitro de plántulas de Solanum tuberosum L. y Medicago truncatula Gaertn [Tesis doctoral en Ciencias Biologicas, Universidad de la Habana]. Repositorio Digital Geotech. http://repositorio.geotech.cu/xmlui/handle/1234/3477

Fiorilli, V., Martínez-Medina, A., Pozo, M. J., & Lanfranco, L. (2024). Plant immunity modulation in arbuscular mycorrhizal symbiosis and its impact on pathogens and pests. Annual Review of Phytopathology, 62(1), 127-156. https://doi.org/10.1146/annurev-phyto-121423-042014

Food and Agriculture Organization of the United Nations. (n.d.). Food and agriculture data. Retrieved August 10, 2024, from https://www.fao.org/faostat/ en/#data/QCL

Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84(3), 489-500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

González, P. J., Ramírez, J. F., Rivera, R., Hernández-Jiménez, A., Plana, R., Crespo, G., & Rosales, P. R. (2015). Management of arbuscular mycorrhizal inoculation for the establishment, maintenance and recovery of grasslands. Cuban Journal of Agricultural Science, 49(4), 535-540. http://cjascience.com/index.php/CJAS/article/view/499

González Cañizares, P. J. (2014). Manejo efectivo de la simbiosis micorrízica arbuscular vía inoculación y la fertilización mineral en pastos del género Brachiaria [Tesis doctoral, Universidad Agraria de La Habana], Repositorio Digital Geotech. http://repositorio.geotech.cu/jspui/handle/1234/3632

Guo, J., Ling, N., Chen, Z., Xue, C., Li, L., Liu, L., Gao, L., Wang, M., Ruan, Y., Guo, S., Vandenkoornhuyse, P., & Shen, Q. (2020). Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes. New Phytologist, 226(1), 232-243. https://doi.org/10.1111/nph.16345

Hammond, J. P., Broadley, M. R., White, P. J., King, G. J., Bowen, H. C., Hayden, R., Meacham, M. C., Mead, A., Overs, T., Spracklen, W. P., & Greenwood, D. J. (2009). Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. Journal of Experimental Botany, 60(7), 1953–1968. https://doi.org/10.1093/jxb/erp083.

Instituto de Investigaciones de Viandas Tropicales. (2007). Instructivo técnico del cultivo del boniato. Editorial de la Asociación Cubana de Técnicos Agrícolas y Forestales, & Istituto de Investigaciones de Viandas Tropicales. Recuperado febrero 10, 2025, de https://1library.co/document/zwvpego0-instructivo-técnico-del-cultivo-del-boniato.html

IUSS Working Group WRB. (2022). World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps (4th ed.). International Union of Soil Sciences. https://wrb.isric.org/documents/ WRB_fourth_edition_2022-12-18.pdf

Janos, D. P. (2007). Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza, 17, 75-91. https://doi.org/10.1007/s00572-006-0094-1

Koch, A. M., Antunes, P. M., Maherali, H., Hart, M. M., & Klironomos, J. N. (2017), Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytologist, 214(3), 1330-1337. https://doi.org/10.1111/nph.14465

Lanfranco, L., Fiorilli, V., & Gutjahr, C. (2018). Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist, 220(4), 1031-1046. https://doi.org/10.1111/nph.15230

Lehmann, A., Leifheit, E. F., & Rillig, M. C. (2017). Mycorrhizas and soil aggregation. In N. C. Johnson, C. Gehring & J. Jansa (Eds.), Mycorrhizal mediation of soil (pp. 241-262). Elsevier. https://doi.org/10.1016/B978-0-12-804312-7.00014-0

Ministerio de la Agricultura. (2022, noviembre 17). Resolución 183/2022 “Procedimiento para resolver las inconformidades por la aplicación de las medidas establecidas en el decreto modificativo del Decreto 10 Reglamento del Decreto-Ley 388 de recursos fitogenéticos para la alimentación, la agricultura y las semillas”. Gaceta Oficial de la República de Cuba. https://www.gacetaoficial.gob.cu/sites/default/files/goc-2022-o113.pdf

Moreno Jiménez, E., Ferrol, N., Corradi, N., Peñalosa, J. M., & Rillig, M. C. (2024), The potential of arbuscular mycorrhizal fungi to enhance metallic micronutrient uptake and mitigate food contamination in agriculture: prospects and challenges. New Phytologist, 242(4), 1441-1447. https://doi.org/10.1111/nph.19269

Oficina Nacional de Estadísticas e Información. (2023). Anuario estadístico de Cuba 2022. Oficina Nacional de Estadísticas e Información. http://onei.gob.cu/anuario-estadistico-de-Cuba-2022

Ortaş, I., & Rafique, M. (2017). The mechanisms of nutrient uptake by arbuscular Mycorrhizae. In A. Varma, R. Prasad, & N. Tuteja (Eds.), Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration (pp. 1- 19). Springer https://doi.org/10.1007/978-3-319-68867-1_1

Paneque, V. M., Calaña, J. M., Calderón, M., Borges, Y., Hernández, T. C., & Caruncho, C. M. (2010). Manual de técnicas analíticas para análisis de suelo, foliar, abonos orgánicos y fertilizantes químicos. Ediciones Instituto Nacional de Ciencias Agrícolas. https://ediciones.inca.edu.cu//files/folletos/folleto_suelos.pdf

Phillips, J. M., & Hayman, D. E. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158-161. https://doi.org/10.1016/S0007-1536(70)80110-3

Püschel, D., Bitterlich, M., Rydlová, J., Bukovská, P., Sudová, R., & Jansa, J. (2023). Benefits in plant N uptake via the mycorrhizal pathway in ample soil moisture persist under severe drought. Soil Biology and Biochemistry, 187, Article 109220. https://doi.org/10.1016/j.soilbio.2023.109220

Rivera, R., Fernández, F., Fernández, K., Ruiz, L., Sánchez, C., & Riera, M. (2007). Advances in the management of effective arbuscular mycorrhizal symbiosis in tropical ecosystems. In C. Hamel, & C. Plenchette (Eds.), Mycorrhizae in crop production (pp. 151-195). Haworth Press.

Rivera Espinosa, R. A., Fernández Martín, F., Ruiz Martínez, L., González Cañizares, P. J., Rodríguez Yon, Y., Pérez Ortega, E., Fernández Suarez, K., Martín Alonso, G. M., Simó González, J., Sánchez Esmoris, C., Riera Nelson, M., De la Noval Pons, B., Ruiz Sánchez, M., Hernández Zardón, A., Hernández Jiménez, A., Plana Llerena, R., Ramírez Pedroso, J., Bustamante González, C., Espinosa Cuellar, A., … Lara Franqui, D. (2020). Manejo, integración y beneficios del biofertilizante micorrízico EcoMic® en la producción agrícola. Ediciones Instituto Nacional de Ciencias Agrícolas. Recuperado noviembre 25, 2024, de https://ediciones.inca.edu.cu/files/libros/beneficios_del_biofertilizante_micorrízico.pdf

Rivera Espinosa, R., González Cañizares, P. J., Ruiz Martínez, L., Martin Alonso, G., & Cabrera Rodríguez, A. (2023). The strategic combination of mycorrhizal inoculants, fertilizers and green manures improve crop productivity. Review of cuban research. In Q.-S. Wu, Y.-N. Zou, Y.-J. He, & N. Zhou (Eds.), New research on mycorrhizal fungus (pp. 55-112). Nova Publishers.

Rodríguez, R., Ontivero, Y., García, Y., Sosa, D., & Gómez, S. (2020). Empleo del tubérculo de boniato (Ipomoea batatass L.) y la cepa Lactobacillus pentosus LB-31 como aditivos a ensilajes mixtos para rumiantes. Livestock Research for Rural Development, 32(7), Artículo 117. http://www.lrrd.org/lrrd32/7/rodri32117.html

Ruan, Y., Kuzyakov, Y., Liu, X., Zhang, X., Xu, Q., Guo, J., Guo, S., Shen, Q., Yang, Y., & Ling, N. (2023). Elevated temperature and CO2 strongly affect the growth strategies of soil bacteria. Nature Communications, 14, Article 391. https://doi.org/10.1038/s41467-023-36086-y

Ruíz Martínez, L. A, Simó-González, J., Rodríguez, S., & Rivera, R. (2012). Las micorrizas en cultivos tropicales. Una contribución a la sostenibilidad agroalimentaria. Editorial Académica Española. https://www.amazon.com/Micorrizas-cultivos-tropicales-sostenibilidad-agroalimentaria/dp/3848453827

Simó González J. E., Rivera Espinosa, R., Ruíz Martínez, L., & Martín Alonso, G. (2020). The integration of AMF inoculants, green manure and organo-mineral fertilization, in banana plantations on Calcic Haplic Phaeozems. Tropical and Subtropical Agroecosystems, 23(1), Article 08. http://dx.doi.org/10.56369/tsaes.2882

Torres-Arias, Y., Ortega-Fors, R., González González, S., & Furrazola Gómez, E. (2015). Diversidad de hongos micorrizógenos arbusculares (Glomeromycota) en bosques semicaducifolios de la Ciénaga de Zapata, Cuba. Revista del Jardín Botánico Nacional, 36, 195-200. https://revistas.uh.cu/rjbn/article/view/7082

Viktorov, A. (2023, October 12). Cuba faced agricultural crisis due to the shortages of seeds, fertilizer and fuel. Fertilizer Daily. https://www.fertilizerdaily.com/20231012-cuba-faced-agricultural-crisis-due-to-the-shortages-of-seeds-fertilizer-and-fuel

Willis, A., Rodrigues, B. F., & Harris, P. J. C. (2013). The ecology of arbuscular mycorrhizal fungi. Critical Reviews in Plant Sciences, 32(1), 1-20. https://doi.org/10.1080/07352689.2012.683375

Wipf, D., Krajinski, F., Van Tuinen, D., Recorbet, G., & Courty, P. E. (2019). Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytologist, 223(3), 1127-1142. https://doi.org/10.1111/nph.15775

Witt, C., Buresh, R. J., Peng, S., Balasubramanian, V., & Doberman, A. (2007). Nutrient management. In T. Fairhust, C. Witt, R. Buresh, & A. Doberman (Eds.). Rice: A practical guide to nutrient management (2nd ed.). International Rice Research Institute, International Plant Nutrition Institute, and International Potash Institute.

Ye, Q., Wang, H., & Li, H. (2022). Arbuscular Mycorrhizal Fungi Improve Growth, Photosynthetic Activity, and Chlorophyll Fluorescence of Vitis vinifera L. cv. Ecolly under Drought Stress. Agronomy, 12, 1563. https://doi.org/10.3390/agronomy12071563

Yuan, J., Shi, K., Zhou, X., Wang, L., Xu, C., Zhang, H., Zhu, G., Si, C., Wang, J., & Zhang, Y. (2023). Interactive impact of potassium and arbuscular mycorrhizal fungi on the root morphology and nutrient uptake of sweet potato (Ipomoea batatass L.). Frontiers in Microbiology, 13, Article 1075957. https://doi.org/10.3389/fmicb.2022.1075957

Zangaro, W., & Rondina, A. B. L. (2016). Arbuscular mycorrhizas in different successional stages in some brazilian ecosystems. In M. C. Pagano (Ed.) Recent Advances on Mycorrhizal Fungi (pp. 47-62). Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-24355-9_5

Downloads

Published

24-10-2025

Issue

Section

Articles

Categories

How to Cite

Rivera Espinosa, R., & Espinosa-Cuéllar, A. (2025). Effectiveness of mycorrhizal inoculation on sweet potato nutrition and NPK fertilization in Cuban Cambisols. Agronomía Mesoamericana. https://doi.org/10.15517/z8vtj702

Most read articles by the same author(s)

Similar Articles

1-10 of 102

You may also start an advanced similarity search for this article.