Antioxidant enzyme activity of ripe and unripe pulp of Vasconcellea candicans (A. Gray) A. DC 1864 (Caricaceae)

Authors

  • Ana Gutiérrez-Román Universidad Nacional Federico Villarreal, Facultad de Ciencias Naturales y Matemáticas, Laboratorio de Bioquímica y Biología Molecular. Lima, Perú. Author https://orcid.org/0000-0002-7020-7387
  • Carlos Santa Cruz-Carpio Universidad Nacional Federico Villarreal, Facultad de Ciencias Naturales y Matemáticas, Laboratorio de Bioquímica y Biología Molecular. Lima, Perú. Author https://orcid.org/0000-0003-3490-1037
  • Mónica Velarde-Vilchez Universidad Nacional Federico Villarreal, Facultad de Ciencias Naturales y Matemáticas, Laboratorio de Bioquímica y Biología Molecular. Lima, Perú. Author https://orcid.org/0000-0002-8774-8729
  • Oscar Nolasco-Cárdenas Universidad Nacional Federico Villarreal, Facultad de Ciencias Naturales y Matemáticas, Laboratorio de Bioquímica y Biología Molecular. Lima, Perú. Author https://orcid.org/0000-0002-5672-5516

DOI:

https://doi.org/10.15517/4m2rxg37

Keywords:

Catalase, peroxidase, superoxide dismutase, glutathione sulfhydryl transferase, mito fruit, andean papaya

Abstract

Introduction. The determination of antioxidant components of native fruits is important for their incorporation into the diet and for their better use and conservation. Objective. To evaluate the activity of the antioxidant enzymes catalase (CAT), peroxidase (POX), superoxide dismutase (SOD) and glutathione sulfhydril transferase (GST), of aqueous extracts of ripe and unripe pulp of the fruit of Vasconcellea candicans (A. Gray) A. DC (“mito”, “andean papaya”) and relate them to their concentration of total polyphenols (PT). Materials and methods. The pulp of four fruits, ripe and unripe, of “mito” from Santo Domingo de Los Olleros, Huarochirí, Lima, Peru, was extracted and processed during March to December 2023. The samples were obtained by aqueous extraction of 20 g of pulp in a 20:80 ratio in water at 8 °C for 15 days (cold maceration technique), using the supernatant after centrifugation. The determination of PT was performed by spectrophotometry using gallic acid as standard. The determination of the specific activity of the enzymes was performed by spectrophotometry using the respective standards. Non-parametric statistics were applied using the statistical software R. Results. The fruits of V. candicans show marked differences between stages of ripeness, particularly in protein content and in the activity of antioxidant enzymes such as CAT, SOD and GST. Biochemical correlations are more pronounced in ripe fruits, indicating a functional reorganization of antioxidant components during ripening. Conclusions. The results suggest that CAT activity, together with polyphenol levels, could be used as a biochemical indicator of the degree of fruit ripeness, which could be used to determine and optimize the post-harvest shelf life of the fruit.

References

Acosta Villalba, M. M., Ramírez Cabrera, L. N., & Espino Espino, R. A. (2015). Efecto hipoglucemiante de extracto etanólico del fruto de Vasconcellea candicans (Kerco) en ratones con hiperglucemia inducida por aloxano. [Tesis de pregrado, Universidad Nacional San Luis Gonzaga de Ica]. Repositorio institucional de la Universidad Nacional San Luis Gonzaga. http://repositorio.unica.edu.pe/handle/20.500.13028/2246

Athesh, K., Karthiga, D., & Brindha, P. (2012). Anti-obesity effect of aqueous fruit extract of Carica papaya L. in rats fed on high fat cafeteria diet. International Journal of Pharmacy and Pharmaceutical Sciences, 4(5), 327–330. https://innovareacademics.in/journal/ijpps/Vol4Suppl5/5050.pdf

Aubert, C., Günata, Z., Ambid, C., & Baumes, R. (2003). Changes in physicochemical characteristics and volatile constituents of yellow- and white-fleshed nectarines during maturation and artificial ripening. Journal of Agricultural and Food Chemistry, 51(10), 3083–3091. https://doi.org/10.1021/jf026153i

Auquiñivin Silva, E. A., & Paucar Menacho, L. M. (2020). Estudio comparativo de las características fisicoquímicas y vida útil de las papayas nativas, “papayita de monte” (Carica pubescens Lenné & K. Koch) y “babaco” (Carica pentagona Heilborn) (Caricaceae) deshidratadas mediante liofilización. Arnaldoa, 27(1), 115–128. https://doi.org/10.22497/ARNALDOA.271.27105

Baquero Duarte, L. E., Castro Rivera, J. A., & Narváez Cuenca, C. E. (2005). Catalasa, peroxidasa y polifenoloxidasa en pitaya amarilla (Acanthocereus pitajaya): Maduración y senescencia. Acta Biológica Colombiana, 10(2), 49–59. https://revistas.unal.edu.co/index.php/actabiol/article/view/27131

Belli Obando, V. (2018). Estudio etnobotánico y morfológico de “Mito” Vasconcellea candicans con énfasis en plántulas [Tesis de Licenciatura, Universidad Nacional Agraria La Molina]. Repositorio institucional Universidad Nacional Agraria La Molina https://hdl.handle.net/20.500.12996/3754

Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559–566. https://doi.org/10.1016/0003-2697(87)90489-1

Bi, F., Meng, X., Ma, C., & Yi, G. (2015). Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing. BMC Genomics, 16, Article 776. https://doi.org/10.1186/s12864-015-1995-1

Board, P. G., Coggan, M., Chelvanayagam, G., Easteal, S., Jermiin, L. S., Schulte, G. K., Danley, D. E., Hoth, L. R., Griffor, M. C., Kamath, A. V., Rosner, M. H., Chrunyk, B. A., Perregaux, D. E., Gabel, C. A., Geoghegan, K. F., & Pandit, J. (2000). Identification, characterization, and crystal structure of the Omega class glutathione transferases. The Journal of Biological Chemistry, 275(32), 24798–24806. https://doi.org/10.1074/jbc.M001706200

Bostock, R. M. (2005). Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annual Review of Phytopathology, 43, 545–580. https://doi.org/10.1146/annurev.phyto.41.052002.095505

Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1006/abio.1976.9999

Camejo, D., Martí, M. C., Román, P., Ortiz, A., & Jiménez, A. (2010). Antioxidant system and protein pattern in peach fruits at two maturation stages. Journal of Agricultural and Food Chemistry, 58(20),11140-11147. https://doi.org/10.1021/jf102807t

Carvajal Carvajal, C. (2019). Especies reactivas del oxígeno: formación, función y estrés oxidativo. Medicina Legal de Costa Rica, 36(1), 91-100.

Correa Tejada, Y. (2020). Capacidad antioxidante y contenido de compuestos fenólicos del extracto hidroalcohólico de la pulpa de Vasconcellea x heilbornii (babaco) [Tesis de Licenciatura, Universidad César Vallejo]. Repositorio institucional digital Universidad César Vallejo. https://hdl.handle.net/20.500.12692/72178

Culquimboz Serván, L. J., & Escudero Rodas, J. (2018). Evaluación in vitro de la actividad antioxidante, antielastasa y anticolagenasa en el extracto etanólico del fruto de Vasconcellea weberbaueri (Harms) V. M. Badillo y determinación de la actividad fotoprotectora in vitro en una crema base [Tesis para optar el título profesional, Universidad Nacional Mayor de San Marcos]. Repositorio institucional de la Universidad Nacional Mayor de San Marcos. https://hdl.handle.net/20.500.12672/9997

Cuya Matos, Oscar (1992). Carica candicans (Mito): Una papaya de zonas áridas que urge revalorar. Boletín de Lima, (82), 75-80. https://boletindelima.pe/products/199282

Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2, Article 53. https://doi.org/10.3389/fenvs.2014.00053

D’Ambrosio, C., Arena, S., Rocco, M., Verrillo, F., Novi, G., Viscosi, V., Marra, M., & Scaloni, A. (2013). Proteomic analysis of apricot fruit during ripening. Journal of Proteomics, 78, 39–57. https://doi.org/10.1016/j.jprot.2012.11.008

Delgado Olivares, L., Betanzos Cabrera, G., & Sumaya Martínez, M. T. (2010). Importancia de los antioxidantes dietarios en la disminución del estrés oxidativo. Investigación y Ciencia, 18(50), 10–15.

Denzoin, L. A., Soraci, A. L., & Tapia, M. O. (2013). Homeostasis del glutatión. Acta Bioquímica Clínica Latinoamericana, 47(3), 529–539.

Dixon, D. P., Cummins, L., Cole, D. J., & Edwards, R. (1998). Glutathione-mediated detoxification systems in plants. Current Opinion in Plant Biology, 1(3), 258–266. https://doi.org/10.1016/s1369-5266(98)80114-3

Dixon, D. P., & Edwards, R. (2009). Selective binding of glutathione conjugates of fatty acid derivatives by plant glutathione transferases. The Journal of Biological Chemistry, 284(32), 21249–21256. https://doi.org/10.1074/jbc.M109.020107

Dixon, D. P., & Edwards, R. (2010). Glutathione Transferases. The Arabidopsis Book 2010(8), Article e0131. https://doi.org/10.1199/tab.0131

Dixon, D. P., Davis, B. G., & Edwards, R. (2002). Functional divergence in the glutathione transferase superfamily in plants: Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. Journal of Biological Chemistry, 277(34), 30859–30869. https://doi.org/10.1074/jbc.M202919200

Dixon, D. P., Skipsey, M., & Edwards, R. (2010). Roles for glutathione transferases in plant secondary metabolism. Phytochemistry, 71(4), 338–350. https://doi.org/10.1016/j.phytochem.2009.12.012

Edwards, R., Dixon, D. P., & Walbot, V. (2000). Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends in Plant Science, 5(5), 193–198. https://doi.org/10.1016/s1360-1385(00)01601-0

Foyer, C. H., Baker, A., Wright, M., Sparkes, I. A., Mhamdi, A., Schippers, J. H. M., & Van Breusegem, F. (2020). On the move: redox-dependent protein relocation in plants. Journal of Experimental Botany, 71(2), 620–631. https://doi.org/10.1093/jxb/erz330

Frear, D. S., & Swanson, H. R. (1970). Biosynthesis of S-(4-ethylamino-6 isopropyl-amino-2-s-triazino) glutathione: partial purification and properties of a glutathione S-transferase from corn. Phytochemistry 9(10), 2123–2132. https://doi.org/10.1016/S0031-9422(00)85377-7

Gallé, Á.; Csiszár, J., Secenji, M., Guóth, A., Cseuz, L., Tari, I., Györgyey, J., & Erdei, L. (2009). Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: Response to water deficit. Journal of Plant Physiology, 166(17), 1878–1891. https://doi.org/10.1016/j.jplph.2009.05.016

Gill, S. S., Anjum, N. A., Gill, R., Yadav, S., Hasanuzzaman, M., Fujita, M., Mishra, P., Sabat, S. C., & Tuteja, N. (2015). Superoxide dismutase--mentor of abiotic stress tolerance in crop plants. Environmental science and pollution research international, 22(14), 10375–10394. https://doi.org/10.1007/s11356-015-4532-5

Gutiérrez, A., Nolasco, O., & Santa Cruz, C. (2017). Purification and preliminary characterization of latex proteases of Vasconcellea candicans (A. Gray) A. DC (Mito). Scientia Agropecuaria, 8(1), 7–17. https://doi.org/10.17268/sci.agropecu.2017.01.01

Habig, W. H., & Jakoby, W. B. (1981). Assays for Differentiation of Glutathione S-Transferases. Methods in Enzymology, 77, 398–405. https://doi.org/10.1016/S0076-6879(81)77053-8

Hanif, A., Ahmad, S., Shahzad, S., Liaquat, M., & Anwar, R. (2020). Postharvest application of salicylic acid reduced decay and enhanced storage life of papaya fruit during cold storage. Journal of Food Measurement and Characterization, 14(6), 3078–3088. https://doi.org/10.1007/s11694-020-00555-5

Jarisarapurin, W., Sanrattana, W., Chularojmontri, L., Kunchana, K., & Wattanapitayakul, S. K. (2019). Antioxidant properties of unripe Carica papaya fruit extract and its protective effects against endothelial oxidative stress. Evidence-Based Complementary and Alternative Medicine, 2019, Article 4912631 https://doi.org/10.1155/2019/4912631

Juárez-Rojop, I. E., Díaz-Zagoya, J. C., Ble-Castillo, J. L., Miranda-Osorio, P. H., Castell-Rodríguez, A. E., Tovilla-Zárate, C. A., Rodríguez-Hernández, A., Aguilar-Mariscal, H., Ramón-Frías, T., & Bermúdez-Ocaña, D. Y. (2012). Hypoglycemic effect of Carica papaya leaves in streptozotocin-induced diabetic rats. BMC Complementary and Alternative Medicine, 12(1), Article 236. https://doi.org/10.1186/1472-6882-12-236

Kumar, V., Irfan, M., Ghosh, S., Chakraborty, N., Chakraborty, S., & Datta, A. (2016). Fruit ripening mutants reveal cell metabolism and redox state during ripening. Protoplasma, 253, 581–594. https://doi.org/10.1007/s00709-015-0836-z

Kunieda, T., Fujiwara, T., Amano, T., & Shioi, Y. (2005). Molecular cloning and characterization of a senescence-induced tau-class Glutathione S-transferase from barley leaves. Plant & Cell Physiology, 46(9), 1540–1548. https://doi.org/10.1093/pcp/pci167

Lamoureux, G. L., Shimabukuro, R. H., Swanson, H. R., & Frear, D. S. (1970). Metabolism of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) in excised sorghum leaf sections. Journal of Agricultural and Food Chemistry, 18(1), 81–86. https://doi.org/10.1021/jf60167a029

Larson, R. (1988). The Antioxidants of higher plants. Phytochemistry, 27(4), 969–978. https://doi.org/https://doi.org/10.1016/0031-9422(88)80254-1

Lv, J., Zhang, J., Han, X., Bai, L., Xu, D., Ding, S., Ge, Y., Li, C., & Li, J. (2020). Genome wide identification of superoxide dismutase (SOD) genes and their expression profiles under 1-methylcyclopropene (1-MCP) treatment during ripening of apple fruit. Scientia Horticulturae, 271, Article 109471. https://doi.org/10.1016/j.scienta.2020.109471

Martínez-Damián, M. T., Cruz-Álvarez, O., Colinas-León, M. T. B., Rodríguez-Pérez, J. E., & Ramírez-Ramírez, S. (2013). Actividad enzimática y capacidad antioxidante en menta (Mentha piperita L.) almacenada bajo refrigeración. Agronomía Mesoamericana, 24(1), 57-69. https://doi.org/10.15517/am.v24i1.9641

Martínez-González, M. E., Balois-Morales, R., Alia-Tejacal, I., Cortes-Cruz, M. A., Palomino-Hermosillo, Y. A., & López-Guzman, G. G. (2017). Poscosecha de frutos: maduración y cambios bioquímicos. Revista Mexicana de Ciencias Agrícolas, 8(spe19), 4075-4087. https://doi.org/10.29312/remexca.v0i19.674

Martínez-Rubio, R., Acebes, J. L., Encina, A., & Kärkönen, A. (2018). Class III peroxidases in cellulose deficient cultured maize cells during cell wall remodeling. Physiologia Plantarum, 164(1), 45–55. https://doi.org/10.1111/ppl.12710

Masia, A. (1998). Superoxide dismutase and catalase activities in apple fruit during ripening and post-harvest and with special reference to ethylene. Physiologia Plantarum, 104(4), 668–672. https://doi.org/10.1034/j.1399-3054.1998.1040421.x

Mondal, K., Sharma, N. S., Malhotra, S. P., Dhawan, K., & Singh, R. (2004). Antioxidant systems in ripening tomato fruits. Biologia Plantarum, 48, 49–53. https://doi.org/10.1023/B:BIOP.0000024274.43874.5b

Nakamura, Y., Morimitsu, Y., Uzu, T., Ohigashi, H., Murakami, A., Naito, Y., Nakagawa, Y., Osawa, T., & Uchida, K. (2000). A glutathione S-transferase inducer from papaya: rapid screening, identification and structure-activity relationship of isothiocyanates. Cancer Letters, 157(2), 193–200. https://doi.org/10.1016/S0304-3835(00)00487-0

Nguyen, T. T., Shaw, P. N., Parat, M. O., & Hewavitharana, A. K. (2013). Anticancer activity of Carica papaya: a review. Molecular nutrition & food research, 57(1), 153–164. https://doi.org/10.1002/MNFR.201200388

Nianiou-Obeidat, I., Madesis, P., Kissoudis, C., Voulgari, G., Chronopoulou, E., Tsaftaris, A., & Labrou, N. E. (2017). Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Reports, 36(6), 791–805. https://doi.org/10.1007/s00299-017-2139-7

Oliveira Resende, E. C., Martins, P. F., Antunes de Azevedo, R. A. de, Jacomino, A. P., & Bron, I. U. (2012). Oxidative processes during ‘Golden’ papaya fruit ripening. Brazilian Journal Plant Physiology, 24(2), 85-94. https://doi.org/10.1590/S1677-04202012000200002

Omaiye Ojonubah, J., & Hafiz Mohd, M. (2020). Impacts of asymmetric biotic interactions and environmental factors on the presence-absence of multispecies. Pertanika Journal of Science & Technology 28(1), 245-261. http://www.pertanika.upm.edu.my/pjst/browse/regular-issue?article=JST-1704-2019

Orabi S.A., Talaat I. M., Balbaa L. K. (2014). Physiological and biochemical responses of thyme plants to some antioxidants. Nusantara Bioscience, 6, 118–125 https://doi.org/10.13057/nusbiosci/n060203

Ozyigit, I. I., Filiz, E., Vatansever, R., Kurtoglu, K. Y., Koc, I., Öztürk, M. X., & Anjum, N. A. (2016). Identification and comparative analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches. Frontiers in Plant Science, 7, Article 301. https://doi.org/10.3389/fpls.2016.00301

Pandey, V. P., Awasthi, M., Singh, S., Tiwari, S., Dwivedi, U. N. (2017). A comprehensive review on function and application of plant peroxidases. Biochemistry & Analytical Biochemistry, 6(1), Article 308. https://doi.org/10.4172/2161-1009.1000308

Pandey, V. P., Singh, S., Jaiswal, N., Awasthi, M., Pandey, B., & Dwivedi, U. N. (2013). Papaya fruit ripening: ROS metabolism, gene cloning, characterization and molecular docking of peroxidase. Journal of Molecular Catalysis B: Enzymatic, 98, 98–105. https://doi.org/10.1016/J.MOLCATB.2013.10.005

Pandey, V. P., Singh, S., Singh, R., & Dwivedi, U. N. (2012). Purification and characterization of peroxidase from papaya (Carica papaya) fruit. Applied biochemistry and biotechnology, 167(2), 367–376. https://doi.org/10.1007/S12010-012-9672-1

Park, S., Sugimoto, N., Larson, M. D., Beaudry, R., & van Nocker, S. (2006). Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiology, 141(3), 811–824. https://doi.org/10.1104/pp.106.080994

Passaia, G., & Margis-Pinheiro, M. (2015). Glutathione peroxidases as redox sensor proteins in plant cells. Plant Science, 234, 22–26. https://doi.org/10.1016/j.plantsci.2015.01.017

Pastori, G.M., & Foyer, C.H. (2002). Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated control. Plant Physiology, 129(2), 460-468. https://doi.org/10.1104/pp.011021

Posso Suárez, D. F., Mattos, A. do P., Rissato, B. B., & Freitas Schwan-Estrada, K. R. (2020). Activación de mecanismos de defensa en maíz pira mediante el uso del abono orgánico Microgeo®. Revista Mexicana de Ciencias Agrícolas, 11(5), 965–977. https://doi.org/10.29312/remexca.v11i5.2009

Pütter, J. (1974). Peroxidases. In H. U. Bergmeyer (Ed.), Methods of enzymatic analysis (pp. 685–690). Elsevier. https://doi.org/10.1016/B978-0-12-091302-2.50033-5

Rai, N., Yadav, M., & Singh Yadav, H. (2016). Enzymatic characterization of lignin peroxidase from Luffa aegyptiaca fruit juice. American Journal of Plant Sciences, 7(3), 649–656. https://doi.org/10.4236/ajps.2016.73057

Rejeb, I. B., Pastor, V., & Mauch-Mani, B. (2014). Plant responses to simultaneous biotic and abiotic stress: Molecular mechanisms. Plants, 3(4), 458-475. https://doi.org/10.3390/plants3040458

Reyes Soria, F. A. (2021). Análisis proteómico cuantitativo de frutos de papaya (Carica papaya L. sometidos a estrés por daño mecánico. [Tesis de maestría, Centro de Investigación Científica de Yucatán]. Repositorio Institucional del Centro de Investigación Científica de Yucatán. https://cicy.repositorioinstitucional.mx/jspui/handle/1003/1857

Riera, M. (2015). Superoxide Dismutase: a therapeutic candidate for oxidative stress. Anales de la Real Academia de Farmacia, 81(1), 25–36. https://analesranf.com/wp-content/uploads/2015/81_01/8101_04.pdf

Rowe, K. C., Rowe, K. M., Tingley, M. W., Koo, M. S., Patton, J. L., Conroy, C., Perrine, J. D., Beissinger, S. R., & Moritz, C. (2015). Spatially heterogeneous impact of climate change on small mammals of montane California. Proceedings. Biological sciences, 282(1799), Article 20141857. https://doi.org/10.1098/rspb.2014.1857

Schreinert dos Santos, R., Pacheco Arge, L. W., Irribarem Costa, S., Dienes Machado, N., de Mello-Farias, P., Valmor Rombaldi, C., & Costa de Oliveira, A. (2015). Genetic regulation and the impact of omics in fruit ripening. Plant Omics, 8(2), 78-88. https://www.pomics.com/oliveria_8_2_2015_78_88.pdf

Schröder, P., Scheer, C. E., Diekmann, F., & Stampfl, A. (2007). How plants cope with foreign compounds. Translocation of xenobiotic glutathione conjugates in roots of barley (Hordeum vulgare). Environmental science and pollution research international, 14(2), 114–122. https://doi.org/10.1065/espr2006.10.352

Shi, H. Y., Li, Z. H., Zhang, Y. X., Chen, L., Xiang, D. Y., & Zhang, Y. F. (2014). Two pear glutathione S-transferases genes are regulated during fruit development and involved in response to salicylic acid, auxin, and glucose signaling. PLOS One, 9(2), Article e89926. https://doi.org/10.1371/journal.pone.0089926

Shi, Y., Jiang, L., Zhang, L., Kang, R., & Yu, Z. (2014). Dynamic changes in proteins during apple (Malus x domestica) fruit ripening and storage. Horticulture Research, 1, Article 6. https://doi.org/10.1038/hortres.2014.6

Shirsat, S., & Kadam, A. (2015). Analysis of tissue specific digestive and antioxidant enzymes from Cucurbita pepo and Langenaria siceraria (Molina) Standl. International Journal of Applied Biology and Phamaceutical Technology, 6(2), 58–67. https://www.fortunejournals.com/ijabpt/pdf/48009-D.%20Shirsat.pdf

Silva, E. P., Cardoso, A. L., Fante, C., Rosell, C. M., & Boas, E. V. (2013). Effect of postharvest temperature on the shelf life of gabiroba fruit (Campomanesia pubescens). Food Science and Technology, 33(4), 632–637. https://doi.org/10.1590/S0101-20612013000400006

Singh, R., Dwivedi, U. N. (2008). Effect of Ethrel and 1-methylcyclopropene (1-MCP) on antioxidants in mango (Mangifera indica var. Dashehari) during fruit ripening. Food Chemistry, 111(4), 951-956. https://doi.org/10.1016/j.foodchem.2008.05.011

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158. https://doi.org/10.5344/AJEV.1965.16.3.144

Soib, H. H., Ismail, H. F., Husin, F., Bakar, M. H. A., Yaakob, H., & Sarmidi, M. R. (2020). Bioassay-Guided different extraction techniques of Carica papaya (Linn) leaves on In vitro wound-healing activities. Molecules, 25(3), Article 517. https://doi.org/10.3390/molecules25030517

Song, J., Bangerth, F. (1996). The effect of harvest date on aroma compound production from ‘Golden Delicious’ apple fruit and relationship to respiration and ethylene production. Postharvest Biology and Technology, 8(4), 259–269. https://doi.org/10.1016/0925-5214(96)00020-8

Song, J., CampbellPalmer, L., Vinqvist-Tymchuk, M., Fillmore, S., Forney, C., Luo, H., & Zhang, Z. (2020). Proteomic Changes in Antioxidant System in Strawberry During Ripening. Frontiers in Plant Science, 11, Article 594156. https://doi.org/10.3389/fpls.2020.594156

Switala, J., & Loewen, P. C. (2002). Diversity of properties among catalases. Archives of biochemistry and biophysics, 401(2), 145–154. https://doi.org/10.1016/S0003-9861(02)00049-8

The Catalogue of Life Partnership. (2017, July 4). APG IV: Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Checklist dataset. https://doi.org/10.15468/FZUAAM

Uribe, E., Delgadillo, A., Giovagnoli-Vicuña, C., Quispe-Fuentes, I., & Zura-Bravo, L. (2015). Extraction techniques for bioactive compounds and antioxidant capacity determination of Chilean papaya (Vasconcellea pubescens) fruit. Journal of Chemistry, 2015, Article 347532. https://doi.org/10.1155/2015/347532

Valencia-Pérez, N. S., Cerón-Montes, G. I., Garrido-Hernández, A., Carrillo-Sancen, G., Yañez-Fernández, J., & Castro-Muñoz, R. (2020). Simulación del tiempo de extracción en función de la temperatura de proceso y de la microestructura del material vegetal. Pädi Boletín Científico de Ciencias Básicas e Ingenierías Del ICBI, 8(Especial), 46–53. https://doi.org/10.29057/icbi.v8iespecial.6370

Vega-Gálvez, A., Poblete, J., Quispe-Fuentes, I., Uribe, E., Bilbao-Sainz, C., & Pastén, A. (2019). Chemical and bioactive characterization of papaya (Vasconcellea pubescens) under different drying technologies: evaluation of antioxidant and antidiabetic potential. Journal of Food Measurement and Characterization, 13, 1980–1990. https://doi.org/10.1007/s11694-019-00117-4

Wagner, U., Edwards, R., Dixon, D. P., & Mauch, F. (2002). Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Molecular Biology, 49(5), 515–532. https://doi.org/10.1023/a:1015557300450

Watada, A. E.; Herner, R. C.; Kader, A. A.; Romani, R. J., & Staby, G. L. (1984). Terminology for the Description of Developmental Stages of Horticultural Crops. HortScience, 19(1), 20-21. https://doi.org/10.21273/HORTSCI.19.1.20

Winterhalter, P., & Schreier, P. (1994). C13-Norisoprenoid glycosides in plant tissues: An overview on their occurrence, composition and role as flavour precursors. Flavour and Fragrance Journal, 9(6), 281-287. https://doi.org/10.1002/ffj.2730090602

Wu, Y., Zou, X., Li, S., Tang, C., Tang, H., & Zhang, Y. (2025). Postharvest application of abscisic acid and methyl jasmonate on fruit quality of ‘Red Zaosu’ pear. Agronomy, 15(6), Article 1263. https://doi.org/10.3390/agronomy15061263

Wyrwicka, A., & Urbaniak, M. (2016). The different physiological and antioxidative responses of zucchini and cucumber to sewage sludge application. PLOS One, 11(6), Article e0157782. https://doi.org/10.1371/journal.pone.0157782

Zura, L., Uribe, E., Lemus-Mondaca, R., Saavedra-Torrico, J., Vega-Gálvez, A., & Di Scala, K. (2013). Rehydration capacity of chilean papaya (Vasconcellea pubescens): Effect of Process Temperature on Kinetic Parameters and Functional Properties. Food and Bioprocess Technology, 6(3), 844–850. https://doi.org/10.1007/s11947-011-0677-5

Downloads

Published

15-10-2025

Issue

Section

Articles

Categories

How to Cite

Antioxidant enzyme activity of ripe and unripe pulp of Vasconcellea candicans (A. Gray) A. DC 1864 (Caricaceae). (2025). Agronomía Mesoamericana. https://doi.org/10.15517/4m2rxg37

Similar Articles

11-20 of 25

You may also start an advanced similarity search for this article.