Unveiling the genetic structure of Costa Rican bovines through genetic admixture models
DOI:
https://doi.org/10.15517/jh40ks60Keywords:
cattle breeds, microsatellites, phylogeny, genetic clusteringAbstract
Introduction. The cattle population in Costa Rica is highly diverse due to the variety of production systems, ongoing crossbreeding, and the increase in genetic imports. Under these circumstances, admixture models provide a more suitable approach to describe the genetic composition of this population than phylogenetic trees based on predefined populations. Objective. To model the genetic structure of the Costa Rican cattle population by means of supervised and unsupervised genetic admixture models. Materials and methods. Hair samples from 1412 randomly selected bovines from 744 herds across 8 regions of Costa Rica were collected in 2015 and genotyped for 18 microsatellite markers. Two approaches that make use of admixture genetic models were compared: an unsupervised scenario, based exclusively on genotype data; and a supervised scenario, which relied on genetic data assisted by prior information on phenotype and production purpose. Results. Analysis of genetic data under both scenarios provided similar results when the number of clusters (K) was lower than five, although estimates from the supervised model were more homogeneous with lower standard deviations. A priori defined subpopulations were distributed consistently among clusters in both scenarios. The most probable subpopulation clustering was observed at K = 3, which mainly separated Bos indicus breeds, Jersey and other Bos taurus breeds. Breed types clustered concordantly with breed clustering, shedding light on the genetic structure of the population. Conclusions. The combination of admixture genetic models under a supervised approach yielded the most consistent results, which reveals the importance of considering genetic-environmental interrelationships to achieve a more precise description of the genetic structure of the Costa Rican cattle population.
Downloads
References
Abdul Muneer, P. M. (2014). Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genetics Research International, 2014(1), Article 691759. https://doi.org/10.1155/2014/691759
Agung, P. P., Saputra, F., Zein, M. S. A., Wulandari, A. S., Putra, W. P. B., Said, S., & Jakaria, J. (2019). Genetic diversity of Indonesian cattle breeds based on microsatellite markers. Asian-Australasian Journal of Animal Sciences, 32(4), 467-476. https://doi.org/10.5713/AJAS.18.0283
Alexander, D. H., & Lange, K. (2011). Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics, 12(1), Article 246. https://doi.org/10.1186/1471-2105-12-246
Anderson, E. C., & Thompson, E. A. (2002). A model-based method for identifying species hybrids using multilocus genetic data. Genetics, 160(3), 1217-1229. https://doi.org/10.1093/GENETICS/160.3.1217
Brasil, B. S. A. F., Coelho, E. G. A., Drummond, M. G., & Oliveira, D. A. A. (2013). Genetic diversity and differentiation of exotic and American commercial cattle breeds raised in Brazil. Genetics and Molecular Research, 12(4), 5516-5526. https://doi.org/10.4238/2013.NOVEMBER.18.2
Carneiro Vieira, M. L., Santini, L., Lima Diniz, A., & De Freitas Munhoz, C. (2016). Microsatellite markers: what they mean and why they are so useful. Genetics and Molecular Biology, 39(3), 312-328. https://doi.org/10.1590/1678-4685-GMB-2016-0027
Coates, B. S., Sumerford, D. V., Miller, N. J., Kim, K. S., Sappington, T. W., Siegfried, B. D., & Lewis, L. C. (2009). Comparative performance of single nucleotide polymorphism and microsatellite markers for population genetic analysis. Journal of Heredity, 100(5), 556-564. https://doi.org/10.1093/JHERED/ESP028
Cordero-Solórzano, J. M., Vargas-Leitón, B., León-Rodríguez, B., Chacón-González, I., & Martínez-Pichardo, M. (2015). Diversidad genética en bovinos de ocho regiones en Costa Rica. Agronomía Mesoamericana, 26(2), 191-202. https://doi.org/10.15517/am.v26i2.19275
Dufresnes, C., Dutoit, L., Brelsford, A., Goldstein-Witsenburg, F., Clément, L., López-Baucells, A., Palmeirim, J., Pavlinić, I., Scaravelli, D., Ševčík, M., Christe, P., & Goudet, J. (2023). Inferring genetic structure when there is little: population genetics versus genomics of the threatened bat Miniopterus schreibersii across Europe. Scientific Reports, 13, Article 1523. https://doi.org/10.1038/s41598-023-27988-4
Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359-361. https://doi.org/10.1007/S12686-011-9548-7
Edea, Z., Bhuiyan, M. S. A., Dessie, T., Rothschild, M. F., Dadi, H., & Kim, K. S. (2015). Genome-wide genetic diversity, population structure and admixture analysis in African and Asian cattle breeds. Animal, 9(2), 218-226. https://doi.org/10.1017/S1751731114002560
Egito, A. A., Paiva, S. R., Albuquerque, M. do S. M., Mariante, A. S., Almeida, L. D., Castro, S. R., & Grattapaglia, D. (2007). Microsatellite based genetic diversity and relationships among ten Creole and commercial cattle breeds raised in Brazil. BMC Genetics, 8, Article 83. https://doi.org/10.1186/1471-2156-8-83
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14(8), 2611-2620. https://doi.org/10.1111/J.1365-294X.2005.02553.X
Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164(4), 1567-1587. https://doi.org/10.1093/GENETICS/164.4.1567
Food and Agriculture Organization of the United Nations. (2011). Molecular genetic characterization of animal genetic resources. https://www.fao.org/4/i2413e/i2413e00.htm
Gebrehiwot, N. Z., Strucken, E. M., Aliloo, H., Marshall, K., & Gibson, J. P. (2020). The patterns of admixture, divergence, and ancestry of African cattle populations determined from genome-wide SNP data. BMC Genomics, 21(1), Article 869. https://doi.org/10.1186/S12864-020-07270-X
Instituto Nacional de Estadística y Censos. (2021). Encuesta Nacional Agropecuaria 2021 Resultados generales de la actividad ganadera vacuna y porcina. https://admin.inec.cr/sites/default/files/2022-10/reagropecENAPECUARIO2021-01.pdf
Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801-1806. https://doi.org/10.1093/BIOINFORMATICS/BTM233
Kumar, P., Freeman, A. R., Loftus, R. T., Gaillard, C., Fuller, D. Q., & Bradley, D. G. (2003). Admixture analysis of South Asian cattle. Heredity, 91(1), 43-50. https://doi.org/10.1038/sj.hdy.6800277
Lawson, D. J., Van Dorp, L., & Falush, D. (2018). A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots. Nature Communications, 9(1), Article 3258. https://doi.org/10.1038/s41467-018-05257-7
Ma, H., Yu, D., Li, J., Qin, Y., Zhang, Y., & Yu, Z. (2022). Construction of first genetic linkage map based on microsatellite markers and characterization of di- and tri-nucleotide microsatellite markers for Crassostrea hongkongesis. Aquaculture, 556, Article 738272. https://doi.org/10.1016/J.AQUACULTURE.2022.738272
Martínez, A. M., Gama, L. T., Cañón, J., Ginja, C., Delgado, J. V., Dunner, S., Landi, V., Martín-Burriel, I., Penedo, M. C. T., Rodellar, C., Vega-Pla, J. L., Acosta, A., Álvarez, L. A., Camacho, E., Cortés, O., Marques, J. R., Martínez, R., Martínez, R. D., Melucci, L., … Zaragoza, P. (2012). Genetic footprints of iberian cattle in America 500 years after the arrival of Columbus. PLoS ONE, 7(11), Article e49066. https://doi.org/10.1371/JOURNAL.PONE.0049066
Martínez, M., Vargas, B., Cordero, J., Chacón, I., & León, B. (2015). Diversidad genética entre subpoblaciones raciales bovinas de Costa Rica. Agronomía Costarricense, 39(2), 33-45. https://doi.org/10.15517/RAC.V39I2.21772
Martinez, R., Bejarano, D., Ramírez, J., Ocampo, R., Polanco, N., Perez, J. E., Onofre, H. G., & Rocha, J. F. (2023). Genomic variability and population structure of six Colombian cattle breeds. Tropical Animal Health and Production, 55, Article 185. https://doi.org/10.1007/S11250-023-03574-8
Ocampo, R. J., Martínez, J. F., & Martínez, R. (2021). Assessment of genetic diversity and population structure of Colombian Creole cattle using microsatellites. Tropical Animal Health and Production, 53, Article 122. https://doi.org/10.1007/S11250-021-02563-Z
Pérez-González, J., Carranza, J., Anaya, G., Broggini, C., Vedel, G., De la Peña, E., & Membrillo, A. (2023). Comparative Analysis of Microsatellite and SNP markers for genetic management of red deer. Animals, 13(21), Article 3374. https://doi.org/10.3390/ANI13213374
Porras-Hurtado, L., Ruiz, Y., Santos, C., Phillips, C., Carracedo, Á., & Lareu, M. V. (2013). An overview of STRUCTURE: Applications, parameter settings, and supporting software. Frontiers in Genetics, 4, Article 98. https://doi.org/10.3389/FGENE.2013.00098
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959. https://doi.org/10.1093/GENETICS/155.2.945
Puckett, E. E. (2017). Variability in total project and per sample genotyping costs under varying study designs including with microsatellites or SNPs to answer conservation genetic questions. Conservation Genetics Resources, 9, 289-304. https://doi.org/10.1007/S12686-016-0643-7
Skotte, L., Korneliussen, T. S., & Albrechtsen, A. (2013). Estimating individual admixture proportions from next generation sequencing data. Genetics, 195(3), 693-702. https://doi.org/10.1534/GENETICS.113.154138
United Nations. (2024). World Population Prospects. Department of Economic and Social Affairs. Retrieved January 20, 2025, from https://population.un.org/wpp/
Upadhyay, M., Bortoluzzi, C., Barbato, M., Ajmone-Marsan, P., Colli, L., Ginja, C., Sonstegard, T. S., Bosse, M., Lenstra, J. A., Groenen, M. A. M., & Crooijmans, R. P. M. A. (2019). Deciphering the patterns of genetic admixture and diversity in southern European cattle using genome-wide SNPs. Evolutionary Applications, 12(5), 951-963. https://doi.org/10.1111/EVA.12770
Utsunomiya, Y. T., Milanesi, M., Fortes, M. R. S., Porto-Neto, L. R., Utsunomiya, A. T. H., Silva, M. V. G. B., Garcia, J. F., & Ajmone-Marsan, P. (2019). Genomic clues of the evolutionary history of Bos indicus cattle. Animal Genetics, 50(6), 557-568. https://doi.org/10.1111/AGE.12836
Vargas, B., & Van Arendonk, J. A. M. (2004). Genetic comparison of breeding schemes based on semen importation and local breeding schemes: framework and application to Costa Rica. Journal of Dairy Science, 87(5), 1496-1505. https://doi.org/10.3168/JDS.S0022-0302(04)73301-9
Vásquez-Loaiza, M., & Molina-Coto, R. (2020). Caracterización de la población bovina cebú con certificado de registro genealógico en Costa Rica. Agronomía Mesoamericana, 31(3), 679-694. https://doi.org/10.15517/AM.V31I3.39059
Vaughan, L. K., Divers, J., Padilla, M. A., Redden, D. T., Tiwari, H. K., Pomp, D., & Allison, D. B. (2009). The use of plasmodes as a supplement to simulations: a simple example evaluating individual admixture estimation methodologies. Computational Statistics & Data Analysis, 53(5), 1755-1766. https://doi.org/10.1016/J.CSDA.2008.02.032
Webster, M. S., & Reichart, L. (2005). Use of microsatellites for parentage and kinship analyses in animals. Methods in Enzymology, 395, 222-238. https://doi.org/10.1016/S0076-6879(05)95014-3
Wickenheiser, R. A. (2002). Trace DNA: a review, discussion of theory, and application of the transfer of trace quantities of DNA through skin contact. Journal of Forensic Sciences, 47(3), 442-450. https://doi.org/10.1520/JFS15284J
Zimmerman, S. J., Aldridge, C. L., & Oyler-Mccance, S. J. (2020). An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genomics, 21, Article 382. https://doi.org/10.1186/S12864-020-06783-9
Downloads
Additional Files
Published
License
Copyright (c) 2025 Bernardo Vargas-Leitón, Johnny Núñez-Cárdenas, Anthony Valverde-Abarca, Bernal León-Rodríguez, Alejandro Saborío-Montero (Autor/a)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).





















