Recent advances to increase the shelf life and safety of packaged foods

Authors

  • Pablo Montero-Prado Universidad Tecnologica de Panama, Centro de Innovacion y Transferencia Tecnologica. Innovation Research Group, Development and Transfer of Agrotechnology (IDTAT). 0819-07289, El Dorado, Panama, Panama Republic. Author https://orcid.org/0000-0002-1471-2741
  • Giancarlo Antonio Ruiz Morales Universidad Tecnologica de Panama, Centro de Innovacion y Transferencia Tecnologica. Innovation Research Group, Development and Transfer of Agrotechnology (IDTAT). 0819-07289, El Dorado, Panama, Panama Republic. Author https://orcid.org/0000-0002-0862-9968

DOI:

https://doi.org/10.15517/am.v33i3.48389

Keywords:

packaging, food additives, sensors, essential oils, antioxidants, antimicrobial agents

Abstract

Introduction. Food packaging has played an important and varied role, accordance with the requirements and demands of the market. Currently, these needs are focused on the goal of having safe and innocuous food for as long as possible. To this end, the study and development of new technologies for food packaging has been expanded, which provides the conditions and characteristics necessary to achieve the proposed objective. Objective. To present the most recent advances in the field of food packaging (active and intelligent). Development. This work presents different techniques and criteria that are considered used to propose the concept of active packaging. Gathering the necessary conditions for the supply or suppression of beneficial or harmful substances, contributing to the conservation and deterioration of the contained foods. In some cases, various compounds, mostly of natural origin, are incorporated to counteract the deterioration of food, such as antioxidants, antimicrobials, oxygen absorbers, carbon dioxide, and ethylene. At the same time, the technology known as intelligent packaging is presented, equipped with the necessary resources to monitor and interpret the internal state of the container, and with the ability to communicate this condition visually to be identified by consumers, merchants, and manufacturers. In both cases, the aim is to eliminate or delay the undesirable modification of food and its implications for human health. Conclusions. The generation of active and intelligent packaging represents an important innovation, which manages to increase the shelf life of food, in conditions suitable for consumption. Reaching a considerable economic impact of the sectors involved. These new developments require an individual evaluation of each specific food against the components used. To know the concentrations, according to the characteristic that is required to be controlled, and in this way, understand the possible interactions that can occur between the content and the container that contains 

Downloads

Download data is not yet available.

References

Aday, M. S., Caner, C., & Rahvalı, F. (2011). Effect of oxygen and carbon dioxide absorbers on strawberry quality. Postharvest Biology and Technology, 62(2), 179–187. https://doi.org/10.1016/j.postharvbio.2011.05.002

Ait-Oubahou, A., Nur Hanani, Z. A., & Jamilah, B. (2019). Packaging. In E. M. Yahia (Ed.), Postharvest Technology of Perishable Horticultural Commodities (pp. 375–399). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-813276-0.00011-0

Aragüez, L., Colombo, A., Borneo, R., & Aguirre, A. (2020). Active packaging from triticale flour films for prolonging storage life of cherry tomato. Food Packaging and Shelf Life, 25, Article 100520. https://doi.org/10.1016/j.fpsl.2020.100520

Barreto, J. C., Trevisan, M. T. S., Hull, W. E., Erben, G., de Brito, E. S., Pfundstein, B., Würtele, G., Spiegelhalder, B., & Owen, R. W. (2008). Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of mango (Mangifera indica L.). Journal of Agricultural and Food Chemistry, 56(14), 5599–5610. https://doi.org/10.1021/jf800738r

Bhargava, N., Sharanagat, V. S., Mor, R. S., & Kumar, K. (2020). Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends in Food Science & Technology, 105, 385–401. https://doi.org/10.1016/j.tifs.2020.09.015

Bolumar, T., LaPeña, D., Skibsted, L. H., & Orlien, V. (2016). Rosemary and oxygen scavenger in active packaging for prevention of high-pressure induced lipid oxidation in pork patties. Food Packaging and Shelf Life, 7, 26–33. https://doi.org/10.1016/j.fpsl.2016.01.002

Borah, H., & Dutta, U. (2019). Trends in beverage packaging. In A. M. Grumezescu, & A. M. Holban (Eds.), Trends in beverage packaging (pp. 1–19). Academic Press. https://doi.org/10.1016/B978-0-12-816683-3.00001-3

Cameron, G. (2020). The future of active and intelligent packaging to 2025 (Packaging) [Market Report]. US-Smithers Innovtive with Confidence.

Coetzee, E. M., Newman, J., Coupland, G. T., Thomas, M., Merwe, J., van der, Ren, Y., & McKirdy, S. J. (2019). Commercial trials evaluating the novel use of ethyl formate for in-transit fumigation of shipping containers. Journal of Environmental Science and Health, Part B, 54(8), 717–727. https://doi.org/10.1080/03601234.2019.1631101

da Rocha-Neto, A. C., Beaudry, R., Maraschin, M., Di Piero, R. M., & Almenar, E. (2019). Double-bottom antimicrobial packaging for apple shelf-life extension. Food Chemistry, 279, 379–388. https://doi.org/10.1016/j.foodchem.2018.12.021

da Silva-Filipini, G., Romani, V. P., & Guimarães Martins, V. (2020). Biodegradable and active-intelligent films based on methylcellulose and jambolão (Syzygium cumini) skins extract for food packaging. Food Hydrocolloids, 109, Article 106139. https://doi.org/10.1016/j.foodhyd.2020.106139

Dey, A., & Neogi, S. (2019). Oxygen scavengers for food packaging applications: A review. Trends in Food Science & Technology, 90, 26–34. https://doi.org/10.1016/j.tifs.2019.05.013

Dong, S. L., Yam, K. L., & Piergiovanni, L. (2008). Food Packaging Science and Technology (1st ed.). CRC Press.

Estévez, M. (2011). Protein carbonyls in meat systems: A review. Meat Science, 89(3), 259–279. https://doi.org/10.1016/j.meatsci.2011.04.025

Fellows, P. (2017). Food processing technology (4th ed.). Woodhead Publishing.

Fraqueza, M. J., & Barreto, A. S. (2011). Gas mixtures approach to improve turkey meat shelf life under modified atmosphere packaging: The effect of carbon monoxide. Poultry Science, 90(9), 2076–2084. https://doi.org/10.3382/ps.2011-01366

Gaikwad, K. K., & Lee, Y. S. (2016). Novel natural phenolic compound-based oxygen scavenging system for active packaging applications. Journal of Food Measurement and Characterization, 10(3), 533–538. https://doi.org/10.1007/s11694-016-9332-1

Gaikwad, K. K., Singh, S., & Lee, Y. S. (2017). A pyrogallol-coated modified LDPE film as an oxygen scavenging film for active packaging materials. Progress in Organic Coatings, 111, 186–195. https://doi.org/10.1016/j.porgcoat.2017.05.016

Gaikwad, K. K., Singh, S., Shin, J., & Lee, Y. S. (2020). Novel polyisoprene-based UV-activated oxygen scavenging films and their applications in packaging of beef jerky. LWT, 117, Article 108643. https://doi.org/10.1016/j.lwt.2019.108643

Ge, Y., Li, Y., Bai, Y., Yuan, C., Wu, C., & Hu, Y. (2020). Intelligent gelatin/oxidized chitin nanocrystals nanocomposite films containing black rice bran anthocyanins for fish freshness monitorings. International Journal of Biological Macromolecules, 155, 1296–1306. https://doi.org/10.1016/j.ijbiomac.2019.11.101

Geng, J., Sun, Y., & Hua, J. (2016). 1,2- and 3,4-rich polyisoprene synthesized by Mo(VI)-based catalyst with phosphorus ligand. Polymer Science Series B, 58(5), 495–502. https://doi.org/10.1134/S1560090416050043

Ghaani, M., Cozzolino, C. A., Castelli, G., & Farris, S. (2016). An overview of the intelligent packaging technologies in the food sector. Trends in Food Science & Technology, 51, 1–11. https://doi.org/10.1016/j.tifs.2016.02.008

Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science & Technology, 35(1), 42–51. https://doi.org/10.1016/j.tifs.2013.10.008

Hamman, J. H. (2008). Composition and applications of aloe vera leaf gel. Molecules, 13(8), 1599–1616. https://doi.org/10.3390/molecules13081599

Han-Lyn, F., Maryam-Adilah, Z. A., Nor-Khaizura, M. A. R., Jamilah, B., & Nur-Hanani, Z. A. (2020). Application of modified atmosphere and active packaging for oyster mushroom (Pleurotus ostreatus). Food Packaging and Shelf Life, 23, Article 100451. https://doi.org/10.1016/j.fpsl.2019.100451

Hou, Z., Qin, P., Zhang, Y., Cui, S., & Ren, G. (2013). Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Research International, 50(2), 691–697. https://doi.org/10.1016/j.foodres.2011.07.037

Hutter, S., Rüegg, N., & Yildirim, S. (2016). Use of palladium based oxygen scavenger to prevent discoloration of ham. Food Packaging and Shelf Life, 8, 56–62. https://doi.org/10.1016/j.fpsl.2016.02.004

Jacob, J., Thomas, S., Loganathan, S., & Valapa, R. B. (2020). Antioxidant incorporated biopolymer composites for active packaging. In Y. Zhang (Ed.), Processing and development of polysaccharide-based biopolymers for packaging applications (1st Ed., pp. 239–260). Elsevier. https://doi.org/10.1016/B978-0-12-818795-1.00010-1

Jeong, S., Lee, H.-G., Cho, C. H., & Yoo, S. (2020). Characterization of multi-functional, biodegradable sodium metabisulfite-incorporated films based on polycarprolactone for active food packaging applications. Food Packaging and Shelf Life, 25, Article 100512. https://doi.org/10.1016/j.fpsl.2020.100512

Kaewklin, P., Siripatrawan, U., Suwanagul, A., & Lee, Y. S. (2018). Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. International Journal of Biological Macromolecules, 112, 523–529. https://doi.org/10.1016/j.ijbiomac.2018.01.124

Kanatt, S. R., & Makwana, S. H. (2020). Development of active, water-resistant carboxymethyl cellulose-poly vinyl alcohol-Aloe vera packaging film. Carbohydrate Polymers, 227, Article 115303. https://doi.org/10.1016/j.carbpol.2019.115303

Kilcast, D., & Subramaniam, P. (2016). The stability and shelf life of food (2nd ed.). Elsevier. https://doi.org/10.1016/C2015-0-06842-3

Kumar, Y., Yadav, D. N., Ahmad, T., & Narsaiah, K. (2015). Recent trends in the use of natural antioxidants for meat and meat products. Comprehensive Reviews in Food Science and Food Safety, 14(6), 796–812. https://doi.org/10.1111/1541-4337.12156

Kurek, M., Hlupić, L., Elez Garofulić, I., Descours, E., Ščetar, M., & Galić, K. (2019). Comparison of protective supports and antioxidative capacity of two bio-based films with revalorised fruit pomaces extracted from blueberry and red grape skin. Food Packaging and Shelf Life, 20, Article 100315. https://doi.org/10.1016/j.fpsl.2019.100315

Kuswandi, B., & Jumina. (2020). Active and intelligent packaging, safety, and quality controls. In M. W. Siddiqui (Ed.), Fresh-cut fruits and vegetables (pp. 243–294). Academic Press. https://doi.org/10.1016/B978-0-12-816184-5.00012-4

Lee, D. S. (2016). Carbon dioxide absorbers for food packaging applications. Trends in Food Science & Technology, 57, 146-155. https://doi.org/10.1016/j.tifs.2016.09.014

Lee, H. G., Jeong, S., & Yoo, S. (2019). Development of food packaging materials containing calcium hydroxide and porous medium with carbon dioxide-adsorptive function. Food Packaging and Shelf Life, 21, Article 100352. https://doi.org/10.1016/j.fpsl.2019.100352

Lee, J. S., Kim, H. K., Kyung, Y., Park, G.-H., Lee, B.-H., Yang, J.-O., Koo, H.-N., & Kim, G.-H. (2018). Fumigation activity of ethyl formate and phosphine against Tetranychus urticae (Acari: Tetranychidae) on imported sweet pumpkin. Journal of Economic Entomology, 111(4), 1625–1632. https://doi.org/10.1093/jee/toy090

Li, Y., Golding, J. B., Arcot, J., & Wills, R. B. H. (2018). Continuous exposure to ethylene in the storage environment adversely affects ‘Afourer’ mandarin fruit quality. Food Chemistry, 242, 585–590. https://doi.org/10.1016/j.foodchem.2017.09.088

Liang, T., Sun, G., Cao, L., Li, J., & Wang, L. (2018). Rheological behavior of film-forming solutions and film properties from Artemisia sphaerocephala Krasch. Gum and purple onion peel extract. Food Hydrocolloids, 82, 124–134. https://doi.org/10.1016/j.foodhyd.2018.03.055

Liang, T., Sun, G., Cao, L., Li, J., & Wang, L. (2019). A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. Gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocolloids, 87, 858–868. https://doi.org/10.1016/j.foodhyd.2018.08.028

Licciardello, F., Kharchoufi, S., Muratore, G., & Restuccia, C. (2018). Effect of edible coating combined with pomegranate peel extract on the quality maintenance of white shrimps (Parapenaeus longirostris) during refrigerated storage. Food Packaging and Shelf Life, 17, 114–119. https://doi.org/10.1016/j.fpsl.2018.06.009

Licciardello, F., & Piergiovanni, L. (2020). Packaging and food sustainability. In C. Galanakis (Ed.), The interaction of food Industry and environment (pp. 191–222). Academic Press. https://doi.org/10.1016/B978-0-12-816449-5.00006-0

Liu, Y., Qin, Y., Bai, R., Zhang, X., Yuan, L., & Liu, J. (2019). Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract. International Journal of Biological Macromolecules, 134, 993–1001. https://doi.org/10.1016/j.ijbiomac.2019.05.175

Lloyd, K., Mirosa, M., & Birch, J. (2019). Active and intelligent packaging. In L. Melton, F. Shahidi, & P. Varelis (Eds.), Encyclopedia of food chemistry (pp. 177–182). Academic Press. https://doi.org/10.1016/B978-0-08-100596-5.22421-9

Lorenzo, J. M., Gómez, M., Purriños, L., & Fonseca, S. (2016). Effect of commercial starter cultures on volatile compound profile and sensory characteristics of dry-cured foal sausage. Journal of the Science of Food and Agriculture, 96(4), 1194–1201. https://doi.org/10.1002/jsfa.7203

Loypimai, P., Moongngarm, A., & Chottanom, P. (2016). Thermal and pH degradation kinetics of anthocyanins in natural food colorant prepared from black rice bran. Journal of Food Science and Technology, 53(1), 461–470. https://doi.org/10.1007/s13197-015-2002-1

Manalili, N., Dorado, M., & van Otterdijk, R. (2014). Appropriate food packaging solutions for developing countries. Food and Agriculture Organization of the United Nations.

Mansourbahmani, S., Ghareyazie, B., Zarinnia, V., Kalatejari, S., & Mohammadi, R. S. (2018). Study on the efficiency of ethylene scavengers on the maintenance of postharvest quality of tomato fruit. Journal of Food Measurement and Characterization, 12(2), 691–701. https://doi.org/10.1007/s11694-017-9682-3

Moazami-Goodarzi, M., Moradi, M., Tajik, H., Forough, M., Ezati, P., & Kuswandi, B. (2020). Development of an easy-to-use colorimetric pH label with starch and carrot anthocyanins for milk shelf life assessment. International Journal of Biological Macromolecules, 153, 240–247. https://doi.org/10.1016/j.ijbiomac.2020.03.014

Mohebi, E., & Shahbazi, Y. (2017). Application of chitosan and gelatin based active packaging films for peeled shrimp preservation: A novel functional wrapping design. LWT - Food Science and Technology, 76, 108–116. https://doi.org/10.1016/j.lwt.2016.10.062

Montero-Prado, P., Rodriguez-Lafuente, A., & Nerin, C. (2011). Active label-based packaging to extend the shelf-life of “Calanda” peach fruit: Changes in fruit quality and enzymatic activity. Postharvest Biology and Technology, 60(3), 211–219. https://doi.org/10.1016/j.postharvbio.2011.01.008

Moradi, M., Omer, A. K., Razavi, R., Valipour, S., & Guimarães, J. T. (2021). The relationship between milk somatic cell count and cheese production, quality and safety: A review. International Dairy Journal, 113, Article 104884. https://doi.org/10.1016/j.idairyj.2020.104884

Munekata, P. E. S., Pateiro, M., Bellucci, E. R. B., Domínguez, R., da Silva-Barretto, A. C., & Lorenzo, J. M. (2021). Strategies to increase the shelf life of meat and meat products with phenolic compounds. Advances in Food and Nutrition Research, 98, 171–205. https://doi.org/10.1016/bs.afnr.2021.02.008

Nerín, C., Vera, P., & Canellas, E. (2017). Active and intelligent food packaging. In R. V. Rai, & J. A. Bai (Eds.), Food Safety and Protection (pp. 459–491). CRC Press. https://doi.org/10.1201/9781315153414-14

Ni, X., Yu, J., Shao, P., Yu, J., Chen, H., & Gao, H. (2021). Preservation of Agaricus bisporus freshness with using innovative ethylene manipulating active packaging paper. Food Chemistry, 345, Article 128757. https://doi.org/10.1016/j.foodchem.2020.128757

Otoni, C. G., Espitia, P. J. P., Avena-Bustillos, R. J., & McHugh, T. H. (2016). Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, 83, 60–73. https://doi.org/10.1016/j.foodres.2016.02.018

Pang, Y., Ahmed, S., Xu, Y., Beta, T., Zhu, Z., Shao, Y., & Bao, J. (2018). Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chemistry, 240, 212–221. https://doi.org/10.1016/j.foodchem.2017.07.095

Pateiro, M., Domínguez, R., Bermúdez, R., Munekata, P. E. S., Zhang, W., Gagaoua, M., & Lorenzo, J. M. (2019). Antioxidant active packaging systems to extend the shelf life of sliced cooked ham. Current Research in Food Science, 1, 24–30. https://doi.org/10.1016/j.crfs.2019.10.002

Pedro, A. C., Granato, D., & Rosso, N. D. (2016). Extraction of anthocyanins and polyphenols from black rice (Oryza sativa L.) by modeling and assessing their reversibility and stability. Food Chemistry, 191, 12–20. https://doi.org/10.1016/j.foodchem.2015.02.045

Pelaes-Vital, A. C., Guerrero, A., Monteschio, J. O., Valero, M. V., Carvalho, C. B., Filho, B. A. A., Madrona, G. S., & Prado, I. N. (2016). Effect of edible and active coating (with rosemary and oregano essential oils) on beef characteristics and consumer acceptability. PLOS ONE, 11(8), Article e0160535. https://doi.org/10.1371/journal.pone.0160535

Perez de Vargas-Sansalvador, I. M., Erenas, M. M., Diamond, D., Quilty, B., & Capitan-Vallvey, L. F. (2017). Water based-ionic liquid carbon dioxide sensor for applications in the food industry. Sensors and Actuators B: Chemical, 253, 302–309. https://doi.org/10.1016/j.snb.2017.06.047

Perez de Vargas-Sansalvador, I. M., Erenas, M. M., Martínez-Olmos, A., Fernández-Ramos, M. D., & Capitán-Vallvey, L. F. (2019). Carbon dioxide sensors for food packaging. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22632-2

Pirsa, S., Sani, I. K., & Khodayvandi, S. (2018). Design and fabrication of starch-nano clay composite films loaded with methyl orange and bromocresol green for determination of spoilage in milk package. Polymers for Advanced Technologies, 29(11), 2750–2758. https://doi.org/10.1002/pat.4397

Pirsa, S., Sani, I. K., Pirouzifard, M. K., & Erfani, A. (2020). Smart film based on chitosan/Melissa officinalis essences/ pomegranate peel extract to detect cream cheeses spoilage. Food Additives & Contaminants: Part A, 37(4), 634–648. https://doi.org/10.1080/19440049.2020.1716079

Qin, Y., Yun, D., Xu, F., Chen, D., Kan, J., & Liu, J. (2021). Smart packaging films based on starch/polyvinyl alcohol and Lycium ruthenicum anthocyanins-loaded nano-complexes: Functionality, stability and application. Food Hydrocolloids, 119, Article 106850. https://doi.org/10.1016/j.foodhyd.2021.106850

Qiu, L., Zhang, M., Tang, J., Adhikari, B., & Cao, P. (2019). Innovative technologies for producing and preserving intermediate moisture foods: A review. Food Research International, 116, 90–102. https://doi.org/10.1016/j.foodres.2018.12.055

Rambabu, K., Bharath, G., Banat, F., Show, P. L., & Cocoletzi, H. H. (2019). Mango leaf extract incorporated chitosan antioxidant film for active food packaging. International Journal of Biological Macromolecules, 126, 1234–1243. https://doi.org/10.1016/j.ijbiomac.2018.12.196

Risch, S. J. (2009). Food packaging history and innovations. Journal of Agricultural and Food Chemistry American Chemical Society, 57(18), 8089–8092. https://doi.org/10.1021/jf900040r

Robertson, G. L. (2016). Food packaging: Principles and practice (3rd ed.). CRC Press. https://doi.org/10.1201/b21347

Rodriguez-Lafuente, A., Nerin, C., & Batlle, R. (2010). Active paraffin-based paper packaging for extending the shelf life of cherry tomatoes. Journal of Agricultural and Food Chemistry, 58(11), 6780–6786. https://doi.org/10.1021/jf100728n

Rudra, S. G., Gundewadi, G., & Sharma, R. R. (2020). Natural additives with antimicrobial and flavoring potential for fresh-cut produce. In M. W. Siddiqui (Ed.), Fresh-cut fruits and vegetables (pp. 165–182). Academic Press. https://doi.org/10.1016/B978-0-12-816184-5.00008-2

Rukchon, C., Nopwinyuwong, A., Trevanich, S., Jinkarn, T., & Suppakul, P. (2014). Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta, 130, 547–554. https://doi.org/10.1016/j.talanta.2014.07.048

Saliu, F., & Della-Pergola, R. (2018). Carbon dioxide colorimetric indicators for food packaging application: Applicability of anthocyanin and poly-lysine mixtures. Sensors and Actuators B: Chemical, 258, 1117–1124. https://doi.org/10.1016/j.snb.2017.12.007

ScienceDirect. (2021). Science, health and medical journals, full text articles and books. https://www.sciencedirect.com/

Sommano, S. R., Chanasut, U., & Kumpoun, W. (2020). Enzymatic browning and its amelioration in fresh-cut tropical fruits. In M. W. Siddiqui (Ed.), Fresh-cut fruits and vegetables (pp. 51–76). Academic Press. https://doi.org/10.1016/B978-0-12-816184-5.00003-3

Sucheta, Singla, G., Chaturvedi, K., & Sandhu, P. P. (2020). Status and recent trends in fresh-cut fruits and vegetables. In M. W. Siddiqui (Ed.), Fresh-cut fruits and vegetables (pp. 17–49). Academic Press. https://doi.org/10.1016/B978-0-12-816184-5.00002-1

Sung, S. Y., Sin, L. T., Tee, T. T., Bee, S. T., Rahmat, A. R., Rahman, W. A. W. A., Tan, A. C., & Vikhraman, M. (2013). Antimicrobial agents for food packaging applications. Trends in Food Science & Technology, 33(2), 110–123. https://doi.org/10.1016/j.tifs.2013.08.001

Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68(2), 408–420. https://doi.org/10.1111/j.1365-2621.2003.tb05687.x

Van de Poel, B., Smet, D., & Van Der Straeten, D. (2015). Ethylene and hormonal cross talk in vegetative growth and development. Plant Physiology, 169(1), 61–72. https://doi.org/10.1104/pp.15.00724

Vanderroost, M., Ragaert, P., Devlieghere, F., & De Meulenaer, B. (2014). Intelligent food packaging: The next generation. Trends in Food Science & Technology, 39(1), 47–62. https://doi.org/10.1016/j.tifs.2014.06.009

Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N., & Debevere, J. (1999). Developments in the active packaging of foods. Trends in Food Science & Technology, 10(3), 77–86. https://doi.org/10.1016/S0924-2244(99)00032-1

Wang, H. J., An, D. S., Rhim, J. W., & Lee, D. S. (2015). A multi-functional biofilm used as an active insert in modified atmosphere packaging for fresh produce. Packaging Technology and Science, 28(12), 999–1010. https://doi.org/10.1002/pts.2179

Watson, J. A., Treadwell, D., Sargent, S. A., Brecht, J. K., & Pelletier, W. (2019). HS1270/HS1270: Postharvest storage, packaging and handling of specialty crops: A guide for Florida small farm producers. University of Florida. https://edis.ifas.ufl.edu/publication/HS1270

Wei, H., Seidi, F., Zhang, T., Jin, Y., & Xiao, H. (2021). Ethylene scavengers for the preservation of fruits and vegetables: A review. Food Chemistry, 337, Article 127750. https://doi.org/10.1016/j.foodchem.2020.127750

Wikström, F., Williams, H., Trischler, J., & Rowe, Z. (2019). The importance of packaging functions for food waste of different products in households. Sustainability, 11(9), Article 2641. https://doi.org/10.3390/su11092641

Wrona, M., Silva, F., Salafranca, J., Nerín, C., Alfonso, M. J., & Caballero, M. Á. (2021). Design of new natural antioxidant active packaging: Screening flowsheet from pure essential oils and vegetable oils to ex vivo testing in meat samples. Food Control, 120, Article 107536. https://doi.org/10.1016/j.foodcont.2020.107536

Yildirim, S., & Röcker, B. (2018). Active packaging. In M. Â. P. R. Cerqueira, J. M. Lagaron, L. M. Pastrana Castro, & A. A. M. de Oliveira Soares Vicente (Eds.), Nanomaterials for food packaging (pp. 173–202). Elsevier. https://doi.org/10.1016/B978-0-323-51271-8.00007-3

Yousuf, B., & Qadri, O. S. (2020). Preservation of fresh-cut fruits and vegetables by edible coatings. In M. W. Siddiqui (Ed.), Fresh-cut fruits and vegetables (pp. 225–242). Academic Press. https://doi.org/10.1016/B978-0-12-816184-5.00011-2

Zaitoon, A., Lim, L.-T., & Scott-Dupree, C. (2021). Activated release of ethyl formate vapor from its precursor encapsulated in ethyl Cellulose/Poly(Ethylene oxide) electrospun nonwovens intended for active packaging of fresh produce. Food Hydrocolloids, 112, Article 106313. https://doi.org/10.1016/j.foodhyd.2020.106313

Zhai, X., Li, Z., Zhang, J., Shi, J., Zou, X., Huang, X., Zhang, D., Sun, Y., Yang, Z., Holmes, M., Gong, Y., & Povey, M. (2018). Natural biomaterial-based edible and pH-sensitive films combined with electrochemical writing for intelligent food packaging. Journal of Agricultural and Food Chemistry, 66(48), 12836–12846. https://doi.org/10.1021/acs.jafc.8b04932

Published

11-07-2022

How to Cite

Montero-Prado, P., & Ruiz Morales, G. A. (2022). Recent advances to increase the shelf life and safety of packaged foods. Agronomía Mesoamericana, 33(3), 48389. https://doi.org/10.15517/am.v33i3.48389

Most read articles by the same author(s)