Jamón de pato criollo (Cairina moschata) ultra-bajo en grasa con harina de albedo de toronja (Citrus x paradisi L.)

Autores/as

DOI:

https://doi.org/10.15517/3v3jz593

Palabras clave:

fibra, capacidad antioxidante, evaluación sensorial, perfil de textura, capacidad de retención de agua

Resumen

Introducción. Los embutidos, productos de consumo mundial, permiten aprovechar diferentes tipos de carne y materias primas subutilizadas, como el albedo de toronja (Citrus x paradisi L.), un subproducto de la industria citrícola que posee fibra y sustancias antioxidantes importantes para la salud humana. Objetivo. Evaluar el efecto de la adición de harina desamargada de albedo de toronja (HDAT), sobre las características fisico-químicas, sensoriales y microbiológicas del jamón de pato ultra bajo en grasa. Materiales y métodos. El estudio se realizó en la Facultad de Educación Técnica para el Desarrollo, de la Universidad Católica de Santiago de Guayaquil, Ecuador, entre septiembre de 2022 y agosto de 2023. Se formularon cuatro tratamientos, con adición del 0, 2, 4 o 6 % de harina de albedo. En los jamones se evaluaron parámetros físico-químicos (pH, acidez titulable, contenido de humedad, ceniza, proteína, fibra, grasa, fenoles totales y capacidad antioxidante); propiedades tecnológicas (estabilidad de la emulsión, rendimiento, capacidad de retención de agua); sanitarios (recuento de microorganismos aerobios mesófilos, Escherichia coli, Staphylococcus aureus y Salmonella); análisis de perfil de textura y análisis sensorial (prueba de aceptación, intención de compra  y  marcar todo lo que aplique) con 41 consumidores Resultados. Los productos elaborados cumplen las normas sanitarias y de composición establecidas. La capacidad antioxidante, contenido de fibra y capacidad de retención de agua se incrementaron con la adición de harina. Todos los productos fueron evaluados con una puntuación equivalente a “Me gusta moderadamente”, y la dureza y elasticidad disminuyeron con el aumento de la harina, pero sin afectar la aceptación de la textura. Conclusiones. Es posible elaborar jamones a partir de carne de pato, con la incorporación de hasta 6 % de HDAT, con buena aceptación, mayor contenido de fibra y capacidad antioxidante.

Biografía del autor/a

  • Jorge Ruperto Velásquez-Rivera, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador.

    Investigador

  • Raúl Díaz-Torres, Universidad de la Habana, La Habana, Cuba.

    Investigador

Referencias

Abdel-Naeem, H. H., Elshebrawy, H. A., Imre, K., Morar, A., Herman, V., Pașcalău, R., & Sallam, K. I. (2022). Antioxidant and antibacterial effect of fruit peel powders in chicken patties. Foods, 11(3), Article 301. https://doi.org/10.3390/foods11030301

Ahn, J. Y., Kim, T. K., Shin, D. M., Lee, J. H., Cha, J. Y., Kim, Y. J., Park, M., & Choi, Y. S. (2023). Comparison of quality characteristics of smoked duck hams in domestic market. Food and Life, 2023(2), 49-54. https://doi.org/10.5851/fl.2023.e5

Alrawashdeh, H., & Abu-Alruz, K. (2022). Development of High-Fiber, Low Fat Chicken Nuggets. International Journal of Food Studies, 11(2), 354–373 https://doi.org/10.7455/ijfs/11.2.2022.a8

Aminzare, M., Hashemi, M., Afshari, A., Noori, S. M. A., & Rezaeigolestani, M. (2022). Comparative evaluation of the effects of different dietary fibers as natural additives on the shelf life of cooked sausages. Jundishapur Journa of Natural Pharmaceutical, 17(3), Article e121624. https://doi.org/10.5812/jjnpp-121624

Aminzare, M., Hashemi, M., Afshari, A., Noori, S. M. A., & Rezaeigolestani, M. (2024). Development of Functional Sausages: A Comparative Study of the Impact of Four Dietary Fibers on the Physico-Chemical Properties of Mortadella Sausages. Journal of Human Environment and Health Promotion, 10(2), 83-88. https://doi.org/10.61186/jhehp.10.2.83

Andrews, W. H., Wang, H., Jacobson, A., Ge, B., Zhang, G., & Hammack, T. (2023). Bacteriological Analytical Manual (BAM). Chapter 5: Salmonella (Bacteriological Analytical Manual). United States Food and Drug Administration. https://www.fda.gov/media/172194/download?attachment

Association of Official Analytical Chemists. (2023a). Official method 950.46. Loss on drying (moisture) in meat. In G. W. Latimer, Jr. (Ed.), Official methods of analysis of AOAC International (Chapter 39.1.02, 22nd ed.). Oxford University Press. https://doi.org/10.1093/9780197610145.003.3431

Association of Official Analytical Chemists. (2023b). Official method 962.09 Fiber (crude) in animal feed and pet food: Ceramic fiber filter method. (2023). In G. W. Latimer, Jr. (Ed.), Official methods of analysis of AOAC International (Chapter 4.6.01, 22nd ed.). Oxford University Press. https://doi.org/10.1093/9780197610145.003.1416

Association of Official Analytical Chemists. (2023c). Official method 992.15. Crude protein in meat and meat products: Including pet foods. Combustion method. In G. W. Latimer, Jr. (Ed.), Official methods of analysis of AOAC International (Chapter 39.1.16, 22nd ed.). Oxford University Press. https://doi.org/10.1093/9780197610145.003.3446

Association of Official Analytical Chemists. (2023d). Official method 2003.06. Crude fat in feeds, cereal grains, and forages: Randall/Soxtec/Hexanes extraction-submersion method. In G. W. Latimer, Jr. (Ed.), Official methods of analysis of AOAC International (Chapter 4.5.06, 22nd ed.). Oxford University Press. https://doi.org/10.1093/9780197610145.003.1415

Association of Official Analytical Chemists. (2023e). Official method 966.23. Microbiological methods. In G. W. Latimer, Jr. (Ed.), Official methods of analysis of AOAC International (Chapter 17.2.01, 22nd ed.). Oxford University Press. https://doi.org/10.1093/9780197610145.003.2172

Azanedo, L., Garcia-Garcia, G., Stone, J., & Rahimifard, S. (2020). An overview of current challenges in new food product development. Sustainability, 12(8), Article 3364. https://doi.org/10.3390/su12083364

Baioumy, A. A., & Abedelmaksoud, T. G. (2021). Quality properties and storage stability of beef burger as influenced by addition of orange peels (albedo). Theory and Practice of Meat Processing, 6(1), 33-38. https://doi.org/10.21323/2414-438X2021-6-1-33-38

Barbut, S. (2023). Research note: Effects of fiber source on the physicochemical properties of lean poultry meat products. Poultry Science, 102(5), Article 102423, https://doi.org/10.1016/j.psj.2022.102423

Ben Zid, M., Dhuique-Mayer, C., Bellagha, S., Sanier, C., Collignan, A., Servent, A., & Dornier, M. (2015). Effects of blanching on flavanones and microstructure of Citrus aurantium peels. Food and Bioprocess Technology, 8(11), 2246–2255. https://doi.org/10.1007/s11947-015-1573-1

Biswas, S., Bhattacharyya, D., Patra, G., Das, A. K., & Das, S. K. (2019). Technological investigation into duck meat and its products-a potential alternative to chicken. World’s Poultry Science Journal, 75(4), 609–620. https://doi.org/10.1017/S004393391900062X.

Cardona-Hincapié, J. A., Restrepo-Molina, D. A., & López-Vargas, J. H. (2020). Effect of a total substitution of vegetable protein and phosphates on shrinkage by cooking and purging in chopped york ham. Revista Facultad Nacional de Agronomía Medellín, 73(3), 9333-9340. https://doi.org/10.15446/rfnam.v73n3.80131

Chappalwar, A. M., Pathak, V., Goswami, M., Verma, A. K., & Rajkumar, V. (2021). Efficacy of lemon albedo as fat replacer for development of ultra‐low‐fat chicken patties. Journal of Food Processing and Preservation, 45(7), Article e15587. https://doi.org/10.1111/jfpp.15587

Chen, C., Fan, X., Hu, Y., Zhou, C., Sun, Y., Du, L., & Pan, D. (2023). Effect of different salt substitutions on the decomposition of lipids and volatile flavor compounds in restructured duck ham. LWT-Food Science and Technology, 176, Article 114541. https://doi.org/10.1016/j.lwt.2023.114541

Choe, J., Lee, J., Jo, K., Jo, C., Song, M., & Jung, S. (2018). Application of winter mushroom powder as an alternative to phosphates in emulsion-type sausages. Meat Science, 143, 114-118. https://doi.org/10.1016/j.meatsci.2018.04.038

Coelho, S. R., Lima, Í. A., Martins, M. L., Júnior, A. A. B., de Almeida Torres Filho, R., Ramos, A. D. L. S., & Ramos, E. M. (2019). Application of Lactobacillus paracasei LPC02 and lactulose as a potential symbiotic system in the manufacture of dry-fermented sausage. LWT-Food Science and Technology, 102, 254-259. https://doi.org/10.1016/j.lwt.2018.12.045

Czech, A., Malik, A., Sosnowska, B., & Domaradzki, P. (2021). Bioactive substances, heavy metals, and antioxidant activity in whole fruit, peel, and pulp of citrus fruits. International Journal of Food Science, 2021(1), Article I6662259. https://doi.org/10.1155/2021/6662259

Dagevos, H., & Verbeke, W. (2022). Meat consumption and flexitarianism in the Low Countries. Meat Science, 192, Article 108894 https://doi.org/10.1016/j.meatsci.2022.108894

da Silva Costa, J., dos Santos, W. M., Lemos, I. M. T., dos Santos Braga, B. S., dos Santos, M. A. S., & de Araújo Guimarães, E. D. A. (2023). Nutritional aspects and commercial challenges of Muscovy duck meat (Cairina moschata). World's Poultry Science Journal, 79(3), 513-533. https://doi.org/10.1080/00439339.2023.2234347

De Angelis, D., Vurro, F., Santamaria, M., Garzon, R., Rosell, C. M., Summo, C., & Pasqualone, A. (2023). Effect of dry-fractionated pea protein on the physicochemical properties and the nutritional features of gluten-free focaccia flat bread. LWT-Food Science and Technology, 182, Article 114873. https://doi.org/10.1016/j.lwt.2023.114873

de Araújo, P. D., Araújo, W. M. C., Patarata, L., & Fraqueza, M. J. (2022). Understanding the main factors that influence consumer quality perception and attitude towards meat and processed meat products. Meat Science, 193, Article 108952. https://doi.org/10.1016/j.meatsci.2022.108952

de Oliveira Paula, M. M., Massingue, A. A., de Moura, A. P. R., de Deus Souza Carneiro, J., de Lemos Souza Ramos, A., & Ramos, E. M. (2021). Temporal dominance of sensations and check-all-that-apply analysis of restructured cooked hams elaborated with different salt content and pork quality meats. Food Science and Technology International, 27(1), 73-83. https://doi.org/10.1177/1082013220932355

Eldahrawy, M., Salem, A. M., & Nabil, M. (2022). The efficiency of citrus peel powders in improvement of meat quality during chilled storage. Benha Veterinary Medical Journal, 42(2), 208-213. https://doi.org/10.21608/BVMJ.2022.144967.1535

Farag, Z. S., Farhat, R. M., & Sharaf, A. M. (2024). Impact of Incorporating Mango Peels Powder on Beef Burger Quality Attributes. Journal of Food and Dairy Sciences, 15(11), 151-158. https://doi.org/10.21608/jfds.2024.328086.1170

Feng, P., Weagant, S. D., Grant, M. A., Burkhardt, W., Shellfish, M., & Water, B. (2020). Bacteriological Analytical Manual (BAM). Chapter 4: Enumeration of Escherichia coli and the Coliform Bacteria. Bacteriological analytical manual, 13(9), 1-13. United States Food and Drug Administration. https://www.fda.gov/media/182572/download?attachment

Fu, L., Du, L., Sun, Y., Fan, X., Zhou, C., He, J., & Pan, D. (2022). Effect of Lentinan on Lipid Oxidation and Quality Change in Goose Meatballs during Cold Storage. Foods, 11(7), Article 1055 https://doi.org/10.3390/foods11071055

Hadidi, M., Orellana-Palacios, J. C., Aghababaei, F., Gonzalez-Serrano, D. J., Moreno, A., & Lorenzo, J. M. (2022). Plant by-product antioxidants: Control of protein-lipid oxidation in meat and meat products. LWT-Food Science and Technology, 169, Article 114003. https://doi.org/10.1016/j.lwt.2022.114003

Han, M., & Bertram, H. C. (2017). Designing healthier comminuted meat products: Effect of dietary fibers on water distribution and texture of a fat-reduced meat model system. Meat Science, 133, 159-165. https://doi.org/10.1016/j.meatsci.2017.07.001

Haque, A., Ahmad, S., Azad, Z. R. A. A., Adnan, M., & Ashraf, S. A. (2023). Incorporating dietary fiber from fruit and vegetable waste in meat products: a systematic approach for sustainable meat processing and improving the functional, nutritional and health attributes. PeerJ, 11, Article e14977. https://doi.org/10.7717/peerj.14977

Instituto Ecuatoriano de Normalización. (1985). NTE INEN-783:1985. Carne y productos cárnicos. Determinación del pH. Quito-Ecuador.

Instituto Ecuatoriano de Normalización (INEN). (2012). NTE INEN 1338:2012. Carne y productos cárnicos. Productos cárnicos crudos, productos cárnicos curados - madurados y productos cárnicos precocidos - cocidos. Requisitos. Quito-Ecuador.

Jin, S., Yang, H., Liu, F., Pang, Q., Shan, A., & Feng, X. (2021). Effect of dietary curcumin supplementation on duck growth performance, antioxidant capacity and breast meat quality. Foods, 10(12), Article 2981. https://doi.org/10.3390/foods10122981

Jonkers, N., van Dommelen, J. A. W., & Geers, M. G. D. (2021). Intrinsic mechanical properties of food in relation to texture parameters. Mechanics of Time-Dependent Materials, 26, 323–346. https://doi.org/10.1007/s11043-021-09490-4

Kausar, T., Hanan, E., Ayob, O., Praween, B., & Azad, Z. R. A. A. (2019). A review on functional ingredients in red meat products. Bioinformation, 15(5), 358-363. https://doi.org/10.6026/97320630015358

Kim, D. H., Kim, T. K., Kim, Y. B., Sung, J. M., Jang, Y., Shim, J. Y., Han, S. G., & Choi, Y. S. (2017). Effect of the duck skin on quality characteristics of duck hams. Korean Journal for Food Science of Animal Resources, 37(3), Article 360. https://doi.org/10.5851/kosfa.2017.37.3.360

Kim, T. K., Shim, J. Y., Hwang, K. E., Kim, Y. B., Sung, J. M., Paik, H. D., & Choi, Y. S. (2018). Effect of hydrocolloids on the quality of restructured hams with duck skin. Poultry Science, 97(12), 4442-4449. https://doi.org/10.3382/ps/pey309

Karwowska, M., Stadnik, J., Stasiak, D. M., Wójciak, K., & Lorenzo, J. M. (2021). Strategies to improve the nutritional value of meat products: Incorporation of bioactive compounds, reduction or elimination of harmful components and alternative technologies. International Journal of Food Science & Technology, 56(12), 6142-6156. https://doi.org/10.1111/ijfs.15060

Maturin, L. & Peeler, J. (2001). Bacteriological analytical manual (BAM) Chapter 3: Aerobic plate count. U.S. Food and Drug Administration. https://www.fda.gov/media/178943/download?attachment

Ming-Min, W., & Ismail-Fitry, M. R. (2023). Physicochemical, rheological and microstructural properties of chicken meat emulsion with the addition of Chinese yam (Dioscorea polystachya) and arrowroot (Maranta arundinacea) as meat substitutes. Future Foods, 7, Article 100221. https://doi.org/10.1016/j.fufo.2023.100221

Nieto, G., Fernández-López, J., Pérez-Álvarez, J. A., Peñalver, R., Ros, G., & Viuda-Martos, M. (2021). Valorization of citrus co-products: Recovery of bioactive compounds and application in meat and meat products. Plants, 10(6), Article 1069. https://doi.org/10.3390/plants10061069

Onk, K., Yalcintan, H., Sari, M., Isik, S. A., Yakan, A., & Ekiz, B. (2019). Effects of genotype and sex on technological properties and fatty acid composition of duck meat. Poultry Science, 98(1), 491-499. https://doi.org/10.3382/ps/pey355

Pérez Chabela, M., & Ponce Alquicira, E. (2013). Manual de prácticas de laboratorio. Tecnología de carnes. Universidad Autónoma Metropolitana. http://publicacionescbs.izt.uam.mx/DOCS/carnes.pdf

Pereira, J., Hu, H., Xing, L., Zhang, W., & Zhou, G. (2019). Influence of rice flour, glutinous rice flour, and tapioca starch on the functional properties and quality of an emulsion-type cooked sausage. Foods, 9(1), Article 9. https://doi.org/10.3390/foods9010009

Roa Acosta, D. F., Bravo Gómez, J. E., Solanilla Duque, J. F., Zuñiga Galindez, J. Z., & Martínez Cruz, J. A. (2022). Antioxidant potential of extruded snacks enriched with hyper-protein quinoa flour and vegetable extracts. Food Science and Technology, 42, Article e74621. https://doi.org/10.1590/fst.74621

Salazar, D., Arancibia, M., Calderón, L., López-Caballero, M. E., & Montero, M. P. (2021). Underutilized Green Banana (Musa acuminata AAA) flours to develop fiber enriched frankfurter-type sausages. Foods, 10(5), Article 1142. https://doi.org/10.3390/foods10051142

Scarton, M., Nascimento, G. C., Felisberto, M. H. F., Moro, T. D. M. A., Behrens, J. H., Barbin, D. F., & Clerici, M. T. P. S. (2021). Muffin with pumpkin flour: technological, sensory and nutritional quality. Brazilian Journal of Food Technology, 24, Article e2020229. https://doi.org/10.1590/1981-6723.22920

Shang, F., Kryzhska, T., & Duan, Z. (2022). Study on the effect of baking process on the quality characteristics, moisture distribution and sensory evaluation of bran, duck and pork emulsification sausage. Eastern-European Journal of Enterprise Technologies, 1(11), Article 115. https://doi.org/10.15587/1729-4061.2022.253210

Shim, J. Y., Kim, T. K., Kim, Y. B., Jeon, K. H., Ahn, K. I., Paik, H. D., & Choi, Y. S. (2018). The ratios of pre-emulsified duck skin for optimized processing of restructured ham. Korean Journal for Food Science of Animal Resources, 38(1), Article 162. https://doi.org/10.5851/kosfa.2018.38.1.162

Shin, D. M., Kim, Y. J., Choi, Y. S., Kim, B. K., & Han, S. G. (2023). Duck fat: Physicochemical characteristics, health effects, and food utilizations. LWT, Article 115435. https://doi.org/10.1016/j.lwt.2023.115435

Shin, D. M., Yune, J. H., Kim, D. H., & Han, S. G. (2023). Effect of sous-vide cooking conditions on the physicochemical, microbiological and microstructural properties of duck breast meat. Animal Bioscience, 36(10), 1596-1603. https://doi.org/10.5713/ab.23.0039

Shin, D. M., Yune, J. H., Kim, T. K., Kim, Y. J., Kwon, H. C., Kim, D. H., Jeong, C. H., Choi, Y., & Han, S. G. (2021). Physicochemical properties and oxidative stability of duck fat-added margarine for reducing the use of fully hydrogenated soybean oil. Food Chemistry, 363, Article 130260. https://doi.org/10.1016/j.foodchem.2021.130260

Silva, L. B. F., Miranda, C. N., Santos, M. D., Pereira, P. A. P., Cunha, L. R. D., Vieira, S. M., & Gandra, K. M. B. (2020). Orange albedo flour as a fat replacer in beef burgers: adding value to citrus industry by-products. Research, Society and Development, 9(10), Article e1599108298. https://doi.org/10.33448/rsd-v9i10.8298

Skwarek, P., & Karwowska, M. (2023). Fruit and vegetable processing by-products as functional meat product ingredients-a chance to improve the nutritional value. LWT-Food Science and Technology, 189, Article 115442. https://doi.org/10.1016/j.lwt.2023.115442

Tavares, P. P. L. G., dos Anjos, E. A., Nascimento, R. Q., da Silva Cruz, L. F., França Lemos, P. V., Druzian, J. I., Batista de Oliveira, T. T., Barreto de Andrade, R., da Costa Souza, A. L., Magalhães-Guedes, K. T., & de Oliveira Mamede, M. E. (2021). Chemical, microbiological and sensory viability of low-calorie, dairy-free kefir beverages from tropical mixed fruit juices. CyTA-Journal of Food, 19(1), 457-464. https://doi.org/10.1080/19476337.2021.1906753

Tigga, A., Bahadur, V., Joseph, A. V., Topno, S. E., Dawson, J., & Jeberson, W. (2024). Influence of Various Edible Oil Coatings on the Shelf Life of Cape Gooseberry (Physalis peruviana L.). Journal of Advances in Biology & Biotechnology, 27(8), 920-929. https://doi.org/10.9734/jabb/2024/v27i81212

Twarogowska, A., Van Droogenbroeck, B., & Fraeye, I. (2022). Application of Belgian endive (Cichorium intybus var. foliosum) dietary fiber concentrate to improve nutritional value and functional properties of plant-based burgers. Food Bioscience, 48, Article 101825. https://doi.org/10.1016/j.fbio.2022.101825

Velásquez-Rivera, J. R., & Díaz-Torres, R. (2024). Citrus peel flour as an ingredient for the meat industry. Agronomía Mesoamericana, 35, Article 58857. https://doi.org/10.15517/am.2024.58857

Vieira, E. D., Styles, D., Sousa, S., Santos, C., Gil, A. M., Gomes, A. M., & Vasconcelos, M. W. (2022). Nutritional, rheological, sensory characteristics and environmental impact of a yogurt-like dairy drink for children enriched with lupin flour. International Journal of Gastronomy and Food Science, 30, Article 100617. https://doi.org/10.1016/j.ijgfs.2022.100617

Xiao, L., Ye, F., Zhou, Y., & Zhao, G. (2021). Utilization of pomelo peels to manufacture value-added products: A review. Food Chemistry, 351, Article 129247. https://doi.org/10.1016/j.foodchem.2021.129247

Yimenu, S. M., Koo, J., Kim, B. S., Kim, J. H., & Kim, J. Y. (2019). Freshness-based real-time shelf-life estimation of packaged chicken meat under dynamic storage conditions. Poultry Science, 98(12), 6921-6930. https://doi.org/10.3382/ps/pez461

Zarate-Vilet, N., Gué, E., Delalonde, M., & Wisniewski, C. (2022). Valorization of grapefruit (Citrus x paradisi) processing wastes. In M. F. Ramadan, & M. A. Farag, (Eds.), Mediterranean fruits bio-wastes: chemistry, functionality and technological applications (pp. 179-220). Springer International Publishing. https://doi.org/10.1007/978-3-030-84436-3_8

Descargas

Publicado

06-10-2025

Número

Sección

Artículos

Categorías

Cómo citar

Jamón de pato criollo (Cairina moschata) ultra-bajo en grasa con harina de albedo de toronja (Citrus x paradisi L.). (2025). Agronomía Mesoamericana. https://doi.org/10.15517/3v3jz593

Artículos similares

1-10 de 56

También puede Iniciar una búsqueda de similitud avanzada para este artículo.