Thermodynamic evaluation of a greenhouse using computational fluid dynamics
DOI:
https://doi.org/10.15517/257zqq83Keywords:
Thermodynamic equilibrium, Greenhouse production, Crop modelling, Thermal analysisAbstract
Introduction. Computational Fluid Dynamics (CFD) is a technique for simulating the behavior of thermodynamic parameters. Objective. Evaluate the thermodynamics of a greenhouse using CFD, in order to propose improvements in lettuce production. Materials and Methods. The research was conducted between October 2022 and February 2023 at the Los Diamantes Agricultural Innovation Center, Limón, Costa Rica. The yield of three lettuce cycles was collected. A 3D mechanical model of the greenhouse was developed. A mesh of 482,664 elements was generated with refinement in the interior. The analysis was performed under steady-state flow, using the Navier-Stokes equation with the k-ε turbulence model and species transport with thermal interactions using the energy equation. Fluid materials (air and air-vapor mixture), solids (soil and polyethylene), and the crop as a porous medium were modeled. Evapotranspiration was estimated using meteorological data and crop coefficients. Boundary conditions included variable velocity input, constant temperature walls, and porous surfaces calibrated with bibliographic data. The model was validated using MAE and RMSE with errors less than 10%, and passive and structural improvements were proposed to optimize the internal microclimate of the greenhouse. Results. During the day, the average temperature and relative humidity in the greenhouse exceeded 30 °C and 65%, respectively, while during the night they decreased to 18 °C and close to 90 %. The temperature showed significant variations in the vertical axis, but remained more homogeneous longitudinally, while the relative humidity showed greater variability in both directions. Conclusion. The modeling allowed visualization of the greenhouse behavior, and it was proposed to increase the dimensions of the zenith window from 11 m² to 20 m²; the installation of two air recirculators and a mobile shade with 50% light transmissibility.
Downloads
References
Ahmed, H., Yu-Xin, T., & Qi-Chang, Y. (2020). Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review. South African Journal of Botany, 130, 75–89. https://doi.org/10.1016/j.sajb.2019.12.018
Amani, M., Foroushani, S., Sultan, M., & Bahrami, M. (2020). Comprehensive review on dehumidification strategies for agricultural greenhouse applications. Applied Thermal Engineering, 181, Article 115979. https://doi.org/10.1016/j.applthermaleng.2020.115979
ANSYS Inc. (2013). ANSYS Fluent user's guide (Vol. 15). ANSYS Inc. https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/main_pre.htm
Baxevanou, C., Fidaros, D., Bartzanas, T., & Kittas, C. (2018). Yearly numerical evaluation of greenhouse cover materials. Computers and Electronics in Agriculture, 149, 54–70. https://doi.org/10.1016/j.compag.2017.12.006
Benni, S., Tassinari, P., Bonora, F., Barbaresi, A., &Torreggiani, D. (2016). Efficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a study case. Energy Buildings, 125, 276-286. https://doi.org/10.1016/j.enbuild.2016.05.014
Bournet, P. E., & Rojano, F. (2022). Advances of Computational Fluid Dynamics (CFD) applications in agricultural building modelling: Research, applications and challenges. Computers and Electronics in Agriculture, 201, Article 107277. https://doi.org/10.1016/j.compag.2022.107277
Cemek, B., Atiş, A., & Küçüktopçu, E. (2017). Evaluation of temperature distribution in different greenhouse models using computational fluid dynamics (CFD). Anadolu Journal of Agricultural Sciences, 32(1), 54-63. https://doi.org/10.7161/omuanajas.289354
Fang, H., Li, K., Wu, G., Cheng, R., Zhang, Y., & Yang, Q. (2020). A CFD analysis on improving lettuce canopy airflow distribution in a plant factory considering the crop resistance and LEDs heat dissipation. Biosystems Engineering, 200, 1–12. https://doi.org/10.1016/j.biosystemseng.2020.08.017
Ferrante, A., & Mariani, L. (2018). Agronomic management for enhancing plant tolerance to abiotic stresses: High and low values of temperature, light intensity, and relative humidity. Horticulturae, 4(3), Article 21. https://doi.org/10.3390/horticulturae4030021
Food and Agriculture Organization of the United Nations. (2006). Evapotranspiración del cultivo: Guías para la determinación de los requerimientos de agua de los cultivos. https://www.fao.org/4/x0490s/x0490s00.htm
Food and Agriculture Organization of the United Nations. (2013). Good agricultural practices for greenhouse vegetable crops: principles for Mediterranean climate areas. https://www.fao.org
Garita Cerdas, A. (2019). Diseño de Sistema de Riego por Goteo en Ambientes Protegidos para Cultivo de Hortalizas, en la Zona de Pacayas y Cipreses, Cartago [Tesis de Licenciatura, Instituto Tecnológico de Costa Rica]. Repositorio TEC. https://repositoriotec.tec.ac.cr/handle/2238/11286
Guo, J., Zhang, Y., Liu, W., Zhao, J., Yu, S., Jia, H., Zhang, C., & Li, Y. (2022). Incorporating in vitro bioaccessibility into human health risk assessment of heavy metals and metalloid (As) in soil and pak choi (Brassica chinensis L.) from greenhouse vegetable production fields in a megacity in Northwest China. Food Chemistry, 373, Article 131477. https://doi.org/10.1016/j.foodchem.2021.131488
Instituto para la Diversificación y Ahorro de la Energía. (2008). Ahorro y Eficiencia Energética en Invernaderos. Instituto para la Diversificación y Ahorro de la Energía. https://www.idae.es/uploads/documentos/documentos_10995_Agr07_AyEE_en_invernaderos_A2008_9e4c63f5.pdf
Khan, A. H., Min, L., Ma, Y., Zeeshan, M., Jin, S., & Zhang, X. (2022). High-temperature stress in crops: male sterility, yield loss and potential remedy approaches. Plant Biotechnology Journal, 21(4), 680–697. https://doi.org/10.1111/pbi.13946
Kim R., Lee I., & Kwon, K. (2017). Evaluation of wind pressure acting on multi-span greenhouses using CFD technique, Part 1: Development of the CFD model. Biosystems Engineering, 164, 235–256. https://doi.org/10.1016/j.biosystemseng.2017.09.008
Kim, R., Hong, S., Lee, I., & Kwon, K. (2017). Evaluation of wind pressure acting on multi-span greenhouses using CFD technique, Part 2: Application of the CFD model. Biosystems Engineering, 164, 257–280. https://doi.org/10.1016/j.biosystemseng.2017.09.011
Li, H., Li, Y., Yue, X., Liu, X., Tian, S., & Li, T. (2020). Evaluation of airflow pattern and thermal behavior of the arched greenhouses with designed roof ventilation scenarios using CFD simulation. PLoS ONE, 15(9). Article e0239851. https://doi.org/10.1371/journal.pone.0239851
Li, Y., Sun, G., & Wang, X. (2014). Temperature Field-Wind Velocity Field Optimum Control of Greenhouse Environment Based on CFD Model. Mathematical Problems in Engineering, 2014(1), Article 949128. https://doi.org/10.1155/2014/949128
López, A., Molina-Aiz, F., Valera, D., & Peña, A. (2016). Wind tunnel analysis of the airflow through insect-proof screens and comparison of their effect when installed in a mediterranean greenhouse. Sensors (Switzerland), 16(5), Article 690. https://doi.org/10.3390/s16050690
López-López, A. J., & Benavides-León, C. (2014). Respuesta Térmica del Invernadero de la Estación Experimental Fabio Baudrit Moreno, Alajuela, Costa Rica. Agronomía Mesoamericana, 25(1), 121–132. https://doi.org/10.15517/am.v25i1.14212
López-Martínez, A., Molina-Aiz, F. D., Valera, D. L., & Espinoza-Ramos, K. E. (2020). Models for characterising the aerodynamics of insect-proof screens from their geometric parameters. Biosystems Engineering, 192, 42–55. https://doi.org/10.1016/j.biosystemseng.2020.01.013
Majdoubi, H., Boulard, T., Fatnassi, H., & Bouirden, L. (2009). Airflow and microclimate patterns in a one-hectare Canary type greenhouse: An experimental and CFD assisted study. Agricultural and Forest Meteorology, 149(6–7), 1050–1062. https://doi.org/10.1016/j.agrformet.2009.01.002
Miguel, A. F., van De Braak, N. J., & Bot, G. P. A. (1997). Analysis of the Airflow Characteristics of Greenhouse Screening Materials. Journal of Agricultural Engineering Research, 67(2), 105–112. https://doi.org/10.1006/jaer.1997.0157
Molina-Aiz, F. D., Fatnassi, H., Boulard, T., Roy, J. C., & Valera, D. L. (2010). Comparison of finite element and finite volume methods for simulation of natural ventilation in greenhouses. Computers and Electronics in Agriculture, 72(2), 69–86. https://doi.org/10.1016/j.compag.2010.03.002
Norton, T., Sun, D.-W., Grant, J., Fallon, R., & Dodd, V. (2007). Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review. Bioresource Technology, 98(12), 2386–2414. https://doi.org/10.1016/j.biortech.2006.11.025
Rojas Rishor, A. (2015). Análisis del Comportamiento Térmico de un Invernadero Construido en Ladera, Aplicando Dinámica de Fluidos Computacional. [Tesis de licenciatura, Universidad de Costa Rica]. Repositorio del Sistema de Bibliotecas, Documentación e Información (SIBDI). https://www.ingbiosistemas.ucr.ac.cr/wp-content/uploads/2016/02/tesis-adriana-rojas.pdf
Sandmann, M., Graefe, J., & Feller, C. (2013). Optical methods for the non-destructive estimation of leaf area index in kohlrabi and lettuce. Scientia Horticulturae, 156, 113–120. https://doi.org/10.1016/j.scienta.2013.04.003
Schneider, J. R., Thiesen, L. A., Engroff, T. D., Holz, E., & Altíssimo, B. S. (2018). Growth analysis of lettuce under different substrate compositions. Advances in Horticultural Science, 32(2), 221–227. https://doi.org/10.13128/ahs-21882
Seo, I. -H., Lee, H. J., Wi, S. H., Lee, S. -W., & Kim, S. K. (2021). Validation of an air temperature gradient using computational fluid dynamics in a semi-open type greenhouse and determination of kimchi cabbage physiological responses to temperature differences. Horticulture Environment and Biotechnology, 62(5), 737–750. https://doi.org/10.1007/s13580-021-00378-3
Teitel, M. (2001). The effect of insect-proof screens in roof openings on greenhouse microclimate. Agricultural and Forest Meteorology, 110(1), 13-25 https://doi.org/10.1016/S0168-1923(01)00280-5
Vásquez Camacho, J. G. (2015). Evaluación agronómica de cinco variedades de lechuga (Lactuca sativa L.) en tres ciclos de siembra consecutivos, en San Miguel de la Tigra, San Carlos, Alajuela, Costa Rica [Tesis de Licenciatura, Instituto Tecnológico de Costa Rica]. Repositorio TEC. https://repositoriotec.tec.ac.cr/bitstream/handle/2238/6469/evaluacion_agronomica_cinco_variedades_lechuga.pdf?sequence=1&isAllowed=y
Villagrán-Munar, E. A., & Bojacá-Aldana, C. R. (2019). Determinación del comportamiento térmico de un invernadero colgante colombiano aplicando simulación CFD. Revista Ciencias Técnicas Agropecuarias, 28(3), 1-10. http://opn.to/a/V8J7U
Villagrán, E. A., & Bojacá, C. R. (2019). Effects of surrounding objects on the thermal performance of passively ventilated greenhouses. Journal of Agricultural Engineering, 50(1), 20–27. https://doi.org/10.4081/jae.2019.856
Villagran, E., Bojacá, C., & Akrami, M. (2021). Contribution to the sustainability of agricultural production in greenhouses built on slope soils: A numerical study of the microclimatic behavior of a typical colombian structure. Sustainability (Switzerland), 13(9). Article 4748 https://doi.org/10.3390/su13094748
Villagrán, E., Flores-Velazquez, J., Bojacá, C., & Akrami, M. (2021). Evaluation of the microclimate in a traditional colombian greenhouse used for cut flower production. Agronomy, 11(7), Article 1330. https://doi.org/10.3390/agronomy11071330
Vivekanandan, M., Periasamy, K., Dinesh Babu, C., Selvakumar, G., & Arivazhagan, R. (2020). Experimental and CFD investigation of six shapes of solar greenhouse dryer in no load conditions to identify the ideal shape of dryer. Materials Today: Proceedings, 37, 1409–1416. https://doi.org/10.1016/j.matpr.2020.07.062
Wang L, Ning S, Zheng W, Guo J, Li Y, Li Y, Chen X, Ben-Gal A, Wei X. (2023) Performance analysis of two typical greenhouse lettuce production systems: commercial hydroponic production and traditional soil cultivation. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1165856
Yeo, U., Lee, S., Park, S., Kim, J., Choi, Y., Kim, R., Shin, J., & Lee, I. (2022). Rooftop Greenhouse: (1) Design and Validation of a BES Model for a Plastic-Covered Greenhouse Considering the Tomato Crop Model and Natural Ventilation Characteristics. Agriculture, 12(7), Article 903. https://doi.org/10.3390/agriculture12070903
Zhou, J., Fagnano, M., Amirahmadi, E., Ghorbani, M., Moudrý, J., Konvalina, P., & Kopecký, M. (2023). Impacts of Environmental Factors and Nutrients Management on Tomato Grown under Controlled and Open Field Conditions. Agronomy, 13(3), Article 916. https://doi.org/10.3390/agronomy13030916
Downloads
Published
License
Copyright (c) 2025 Bernal Steven Valverde Delgado, Stephanie Quirós Campos (Autor/a)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).





















