Thermodynamic evaluation of a greenhouse using computational fluid dynamics

Authors

DOI:

https://doi.org/10.15517/257zqq83

Keywords:

Thermodynamic equilibrium, Greenhouse production, Crop modelling, Thermal analysis

Abstract

Introduction. Computational Fluid Dynamics (CFD) is a technique for simulating the behavior of thermodynamic parameters. Objective. Evaluate the thermodynamics of a greenhouse using CFD, in order to propose improvements in lettuce production. Materials and Methods. The research was conducted between October 2022 and February 2023 at the Los Diamantes Agricultural Innovation Center, Limón, Costa Rica. The yield of three lettuce cycles was collected. A 3D mechanical model of the greenhouse was developed. A mesh of 482,664 elements was generated with refinement in the interior. The analysis was performed under steady-state flow, using the Navier-Stokes equation with the k-ε turbulence model and species transport with thermal interactions using the energy equation. Fluid materials (air and air-vapor mixture), solids (soil and polyethylene), and the crop as a porous medium were modeled. Evapotranspiration was estimated using meteorological data and crop coefficients. Boundary conditions included variable velocity input, constant temperature walls, and porous surfaces calibrated with bibliographic data. The model was validated using MAE and RMSE with errors less than 10%, and passive and structural improvements were proposed to optimize the internal microclimate of the greenhouse. Results. During the day, the average temperature and relative humidity in the greenhouse exceeded 30 °C and 65%, respectively, while during the night they decreased to 18 °C and close to 90 %. The temperature showed significant variations in the vertical axis, but remained more homogeneous longitudinally, while the relative humidity showed greater variability in both directions. Conclusion. The modeling allowed visualization of the greenhouse behavior, and it was proposed to increase the dimensions of the zenith window from 11 m² to 20 m²; the installation of two air recirculators and a mobile shade with 50% light transmissibility.

Downloads

Download data is not yet available.

Author Biographies

  • Bernal Steven Valverde Delgado, Universidad de Costa Rica (UCR), Escuela de Ingeniería de Biosistemas. San José, Costa Rica.

    Licensed engineer, currently serving as a Food Safety Inspector for the State Phytosanitary Service of the Ministry of Agriculture and Livestock. His professional experience focuses on the inspection and control of food safety in agricultural products, in compliance with national and international regulations. He has a strong interest in the modeling of thermodynamic phenomena using Computational Fluid Dynamics (CFD) techniques, as well as in data analysis applied to the agri-food sector. His approach combines computational tools with technical criteria to optimize processes and ensure quality and safety standards in agricultural production. He is a professional committed to continuous improvement and the integration of new technologies in the agricultural sector.

  • Stephanie Quirós Campos, Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria (INTA), Unidad Agrícola Central. San José, Costa Rica.

    Researcher

References

Ahmed, H., Yu-Xin, T., & Qi-Chang, Y. (2020). Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review. South African Journal of Botany, 130, 75–89. https://doi.org/10.1016/j.sajb.2019.12.018

Amani, M., Foroushani, S., Sultan, M., & Bahrami, M. (2020). Comprehensive review on dehumidification strategies for agricultural greenhouse applications. Applied Thermal Engineering, 181, Article 115979. https://doi.org/10.1016/j.applthermaleng.2020.115979

ANSYS Inc. (2013). ANSYS Fluent user's guide (Vol. 15). ANSYS Inc. https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/main_pre.htm

Baxevanou, C., Fidaros, D., Bartzanas, T., & Kittas, C. (2018). Yearly numerical evaluation of greenhouse cover materials. Computers and Electronics in Agriculture, 149, 54–70. https://doi.org/10.1016/j.compag.2017.12.006

Benni, S., Tassinari, P., Bonora, F., Barbaresi, A., &Torreggiani, D. (2016). Efficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a study case. Energy Buildings, 125, 276-286. https://doi.org/10.1016/j.enbuild.2016.05.014

Bournet, P. E., & Rojano, F. (2022). Advances of Computational Fluid Dynamics (CFD) applications in agricultural building modelling: Research, applications and challenges. Computers and Electronics in Agriculture, 201, Article 107277. https://doi.org/10.1016/j.compag.2022.107277

Cemek, B., Atiş, A., & Küçüktopçu, E. (2017). Evaluation of temperature distribution in different greenhouse models using computational fluid dynamics (CFD). Anadolu Journal of Agricultural Sciences, 32(1), 54-63. https://doi.org/10.7161/omuanajas.289354

Fang, H., Li, K., Wu, G., Cheng, R., Zhang, Y., & Yang, Q. (2020). A CFD analysis on improving lettuce canopy airflow distribution in a plant factory considering the crop resistance and LEDs heat dissipation. Biosystems Engineering, 200, 1–12. https://doi.org/10.1016/j.biosystemseng.2020.08.017

Ferrante, A., & Mariani, L. (2018). Agronomic management for enhancing plant tolerance to abiotic stresses: High and low values of temperature, light intensity, and relative humidity. Horticulturae, 4(3), Article 21. https://doi.org/10.3390/horticulturae4030021

Food and Agriculture Organization of the United Nations. (2006). Evapotranspiración del cultivo: Guías para la determinación de los requerimientos de agua de los cultivos. https://www.fao.org/4/x0490s/x0490s00.htm

Food and Agriculture Organization of the United Nations. (2013). Good agricultural practices for greenhouse vegetable crops: principles for Mediterranean climate areas. https://www.fao.org

Garita Cerdas, A. (2019). Diseño de Sistema de Riego por Goteo en Ambientes Protegidos para Cultivo de Hortalizas, en la Zona de Pacayas y Cipreses, Cartago [Tesis de Licenciatura, Instituto Tecnológico de Costa Rica]. Repositorio TEC. https://repositoriotec.tec.ac.cr/handle/2238/11286

Guo, J., Zhang, Y., Liu, W., Zhao, J., Yu, S., Jia, H., Zhang, C., & Li, Y. (2022). Incorporating in vitro bioaccessibility into human health risk assessment of heavy metals and metalloid (As) in soil and pak choi (Brassica chinensis L.) from greenhouse vegetable production fields in a megacity in Northwest China. Food Chemistry, 373, Article 131477. https://doi.org/10.1016/j.foodchem.2021.131488

Instituto para la Diversificación y Ahorro de la Energía. (2008). Ahorro y Eficiencia Energética en Invernaderos. Instituto para la Diversificación y Ahorro de la Energía. https://www.idae.es/uploads/documentos/documentos_10995_Agr07_AyEE_en_invernaderos_A2008_9e4c63f5.pdf

Khan, A. H., Min, L., Ma, Y., Zeeshan, M., Jin, S., & Zhang, X. (2022). High-temperature stress in crops: male sterility, yield loss and potential remedy approaches. Plant Biotechnology Journal, 21(4), 680–697. https://doi.org/10.1111/pbi.13946

Kim R., Lee I., & Kwon, K. (2017). Evaluation of wind pressure acting on multi-span greenhouses using CFD technique, Part 1: Development of the CFD model. Biosystems Engineering, 164, 235–256. https://doi.org/10.1016/j.biosystemseng.2017.09.008

Kim, R., Hong, S., Lee, I., & Kwon, K. (2017). Evaluation of wind pressure acting on multi-span greenhouses using CFD technique, Part 2: Application of the CFD model. Biosystems Engineering, 164, 257–280. https://doi.org/10.1016/j.biosystemseng.2017.09.011

Li, H., Li, Y., Yue, X., Liu, X., Tian, S., & Li, T. (2020). Evaluation of airflow pattern and thermal behavior of the arched greenhouses with designed roof ventilation scenarios using CFD simulation. PLoS ONE, 15(9). Article e0239851. https://doi.org/10.1371/journal.pone.0239851

Li, Y., Sun, G., & Wang, X. (2014). Temperature Field-Wind Velocity Field Optimum Control of Greenhouse Environment Based on CFD Model. Mathematical Problems in Engineering, 2014(1), Article 949128. https://doi.org/10.1155/2014/949128

López, A., Molina-Aiz, F., Valera, D., & Peña, A. (2016). Wind tunnel analysis of the airflow through insect-proof screens and comparison of their effect when installed in a mediterranean greenhouse. Sensors (Switzerland), 16(5), Article 690. https://doi.org/10.3390/s16050690

López-López, A. J., & Benavides-León, C. (2014). Respuesta Térmica del Invernadero de la Estación Experimental Fabio Baudrit Moreno, Alajuela, Costa Rica. Agronomía Mesoamericana, 25(1), 121–132. https://doi.org/10.15517/am.v25i1.14212

López-Martínez, A., Molina-Aiz, F. D., Valera, D. L., & Espinoza-Ramos, K. E. (2020). Models for characterising the aerodynamics of insect-proof screens from their geometric parameters. Biosystems Engineering, 192, 42–55. https://doi.org/10.1016/j.biosystemseng.2020.01.013

Majdoubi, H., Boulard, T., Fatnassi, H., & Bouirden, L. (2009). Airflow and microclimate patterns in a one-hectare Canary type greenhouse: An experimental and CFD assisted study. Agricultural and Forest Meteorology, 149(6–7), 1050–1062. https://doi.org/10.1016/j.agrformet.2009.01.002

Miguel, A. F., van De Braak, N. J., & Bot, G. P. A. (1997). Analysis of the Airflow Characteristics of Greenhouse Screening Materials. Journal of Agricultural Engineering Research, 67(2), 105–112. https://doi.org/10.1006/jaer.1997.0157

Molina-Aiz, F. D., Fatnassi, H., Boulard, T., Roy, J. C., & Valera, D. L. (2010). Comparison of finite element and finite volume methods for simulation of natural ventilation in greenhouses. Computers and Electronics in Agriculture, 72(2), 69–86. https://doi.org/10.1016/j.compag.2010.03.002

Norton, T., Sun, D.-W., Grant, J., Fallon, R., & Dodd, V. (2007). Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review. Bioresource Technology, 98(12), 2386–2414. https://doi.org/10.1016/j.biortech.2006.11.025

Rojas Rishor, A. (2015). Análisis del Comportamiento Térmico de un Invernadero Construido en Ladera, Aplicando Dinámica de Fluidos Computacional. [Tesis de licenciatura, Universidad de Costa Rica]. Repositorio del Sistema de Bibliotecas, Documentación e Información (SIBDI). https://www.ingbiosistemas.ucr.ac.cr/wp-content/uploads/2016/02/tesis-adriana-rojas.pdf

Sandmann, M., Graefe, J., & Feller, C. (2013). Optical methods for the non-destructive estimation of leaf area index in kohlrabi and lettuce. Scientia Horticulturae, 156, 113–120. https://doi.org/10.1016/j.scienta.2013.04.003

Schneider, J. R., Thiesen, L. A., Engroff, T. D., Holz, E., & Altíssimo, B. S. (2018). Growth analysis of lettuce under different substrate compositions. Advances in Horticultural Science, 32(2), 221–227. https://doi.org/10.13128/ahs-21882

Seo, I. -H., Lee, H. J., Wi, S. H., Lee, S. -W., & Kim, S. K. (2021). Validation of an air temperature gradient using computational fluid dynamics in a semi-open type greenhouse and determination of kimchi cabbage physiological responses to temperature differences. Horticulture Environment and Biotechnology, 62(5), 737–750. https://doi.org/10.1007/s13580-021-00378-3

Teitel, M. (2001). The effect of insect-proof screens in roof openings on greenhouse microclimate. Agricultural and Forest Meteorology, 110(1), 13-25 https://doi.org/10.1016/S0168-1923(01)00280-5

Vásquez Camacho, J. G. (2015). Evaluación agronómica de cinco variedades de lechuga (Lactuca sativa L.) en tres ciclos de siembra consecutivos, en San Miguel de la Tigra, San Carlos, Alajuela, Costa Rica [Tesis de Licenciatura, Instituto Tecnológico de Costa Rica]. Repositorio TEC. https://repositoriotec.tec.ac.cr/bitstream/handle/2238/6469/evaluacion_agronomica_cinco_variedades_lechuga.pdf?sequence=1&isAllowed=y

Villagrán-Munar, E. A., & Bojacá-Aldana, C. R. (2019). Determinación del comportamiento térmico de un invernadero colgante colombiano aplicando simulación CFD. Revista Ciencias Técnicas Agropecuarias, 28(3), 1-10. http://opn.to/a/V8J7U

Villagrán, E. A., & Bojacá, C. R. (2019). Effects of surrounding objects on the thermal performance of passively ventilated greenhouses. Journal of Agricultural Engineering, 50(1), 20–27. https://doi.org/10.4081/jae.2019.856

Villagran, E., Bojacá, C., & Akrami, M. (2021). Contribution to the sustainability of agricultural production in greenhouses built on slope soils: A numerical study of the microclimatic behavior of a typical colombian structure. Sustainability (Switzerland), 13(9). Article 4748 https://doi.org/10.3390/su13094748

Villagrán, E., Flores-Velazquez, J., Bojacá, C., & Akrami, M. (2021). Evaluation of the microclimate in a traditional colombian greenhouse used for cut flower production. Agronomy, 11(7), Article 1330. https://doi.org/10.3390/agronomy11071330

Vivekanandan, M., Periasamy, K., Dinesh Babu, C., Selvakumar, G., & Arivazhagan, R. (2020). Experimental and CFD investigation of six shapes of solar greenhouse dryer in no load conditions to identify the ideal shape of dryer. Materials Today: Proceedings, 37, 1409–1416. https://doi.org/10.1016/j.matpr.2020.07.062

Wang L, Ning S, Zheng W, Guo J, Li Y, Li Y, Chen X, Ben-Gal A, Wei X. (2023) Performance analysis of two typical greenhouse lettuce production systems: commercial hydroponic production and traditional soil cultivation. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1165856

Yeo, U., Lee, S., Park, S., Kim, J., Choi, Y., Kim, R., Shin, J., & Lee, I. (2022). Rooftop Greenhouse: (1) Design and Validation of a BES Model for a Plastic-Covered Greenhouse Considering the Tomato Crop Model and Natural Ventilation Characteristics. Agriculture, 12(7), Article 903. https://doi.org/10.3390/agriculture12070903

Zhou, J., Fagnano, M., Amirahmadi, E., Ghorbani, M., Moudrý, J., Konvalina, P., & Kopecký, M. (2023). Impacts of Environmental Factors and Nutrients Management on Tomato Grown under Controlled and Open Field Conditions. Agronomy, 13(3), Article 916. https://doi.org/10.3390/agronomy13030916

Downloads

Published

24-10-2025

Issue

Section

Articles

Categories

How to Cite

Valverde Delgado, B. S. ., & Quirós Campos, S. (2025). Thermodynamic evaluation of a greenhouse using computational fluid dynamics. Agronomía Mesoamericana. https://doi.org/10.15517/257zqq83