Chemical improvement of acid soils using calcareous amendments in rambutan cultivation in Honduras
DOI:
https://doi.org/10.15517/am.2025.61837Keywords:
liming, soil activity, exchangeable aluminum, calcium carbonateAbstract
Introduction. Soil acidity generates toxicity due to high aluminum concentrations and low macronutrients availability in rambutan (Nephelium lappaceum) cultivation, causing high production costs when corrected with
synthetic fertilizers and alkaline correctives. Objective. To improve soil acidity indicators through the use of
increasing doses of two calcareous amendments in a rambutan crop located on the Caribbean coast of Honduras. Materials and methods. A trial was carried out between March and November 2023 under field conditions on a
producer’s farm in the municipality of San Francisco, Atlántida, Honduras. Increasing doses (0, 1, 2 and 3 Mg ha-1) of two types of calcareous amendments were evaluated: agricultural lime with 34.3 % Ca and 0.3 % Mg (CA), and calcite with 25.5 % Ca and 1.2 % Mg (CAL). A randomized complete block design with a 4 × 4 factorial arrangement and three repetitions was used, resulting in 16 treatments. Soil pH, exchangeable aluminum (Al3+), exchangeable acidity
(Al3+ + H+), and H+ were measured on five occasions. Results. The individual use of each amendment stimulated the correction of the acidity indicators evaluated; the best dose was 3 Mg ha-1. Soil pH increased with higher doses of both liming materials, and the highest dose (6 Mg ha-1) combining both amendments showed the best response. The
concentrations of H+, Al3+ and Al3+ + H+ decreased as liming doses increased, with a similar effect observed when using between 3 and 6 Mg ha-1. For most of the parameters analyzed, except H+, significant changes were recorded at the fourth sampling, six months after the lime application, with CA showing better results. Conclusions. Increasing doses of both calcareous amendments reduced soil acidity indicators in rambutan cultivation, with agricultural lime
providing better control.
Downloads
References
Alley, M. M., & Zelazny, L. W. (1987). Soil acidity: Soil pH and lime needs. In J. R. Brown (Ed.), Soil testing: Sampling, correlation, calibration, and interpretation (Vol. 21, pp. 65–72). Soil Science Society of America. https://doi.org/10.2136/sssaspecpub21.c7
Alvarado-Ochoa, S., Chico, J., Espinosa, J., Rivera, M., Córdova, J., & Valverde, F. (2024). El encalado y su relación con la fertilidad de suelos ácidos ecuatorianos. Siembra, 11(3), Artículo e5564. https://revistadigital.uce.edu.ec/index.php/SIEMBRA/article/view/5564
Álvarez Jiménez, L. M. (2023). Efecto de la aplicación de enmiendas convencionales y micronizadas en la acidez de un ultisol y en el crecimiento de piña, en Río Cuarto, Alajuela, Costa Rica [Tesis de maestría, Universidad de Costa Rica]. Repositorio Kérwá. https://www.kerwa.ucr.ac.cr/items/f57d147e-26fc-4415-97cd-3317cb6ebeeb
Balsberg Påhlsson, A.-M. (1990). Influence of aluminium on biomass, nutrients, soluble carbohydrates and phenols in beech (Fagus sylvatica). Physiologia Plantarum, 78(1), 79–84. https://doi.org/10.1111/j.1399-3054.1990.tb08718.x
Bolan, N. S., & Hedley, M. J. (2003). Role of carbon, nitrogen, and sulfur cycles in soil acidification. In Z. Rengel (Eds.), Handbook of Soil Acidity (1st ed., Chapter 2, pp. 29–52). CRC Press.
Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5), 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x
Castro, H., & Centro Internacional de Agricultura Tropical. (2004). Propuesta guía de indicadores analíticos para calificar suelos estables y en proceso de degradación desde el punto de vista físico. En Centro Internacional de Agricultura Tropical (Ed.), Memorias I Taller Nacional sobre indicadores de calidad del suelo (pp. 37–42). Centro Internacional de Agricultura Tropical.
Chien, S. H., Gearhart, M. M., & Collamer, D. J. (2008). The effect of different ammoniacal nitrogen sources on soil acidification. Soil Science, 173(8), 544–551. https://doi.org/10.1097/SS.0b013e31817d9d17
Coronado Llanos, N. (2024). Efecto del encalado en la acidez del suelo en el Caserío La Totora, Distrito de Calquis, San Miguel – Cajamarca [Tesis de grado, Universidad Nacional de Cajamarca]. Repositorio Institucional de la Universidad Nacional de Cajamarca. https://repositorio.unc.edu.pe/handle/20.500.14074/7548
Díaz-Poveda, V. C., & Sadeghian, S. S. (2022). Eficiencia de enmiendas utilizadas como correctivos de la acidez del suelo en el cultivo del café en Colombia. Revista Cenicafé, 73(1), Artículo e73103. https://doi.org/10.38141/10778/73103
Espinosa, J., & Molina, E. (1999). Acidez y encalado de los suelos. International Plant Nutrition Institute.
Fassbender, H., & Bornemisza, E. (1987). Química de suelos con énfasis en suelos de América Latina. Instituto Interamericano de Cooperación para la Agricultura.
Fundación Hondureña de Investigación Agrícola. (2022). Informe técnico 2022 programa de cacao y agroforestería. https://fhia.org.hn/wp-content/uploads/inf_Programa_de_Cacao_y_Agroforesteria-2022.pdf
Goulding, K. W. T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 32(3), 390–399. https://doi.org/10.1111/sum.12270
Haynes, R. J., & Mokolobate, M. S. (2001). Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutrient Cycling in Agroecosystems, 59, 47–63. https://doi.org/10.1023/A:1009823600950
He, Y., Liu, Z., Zhang, J., Wang, H., Shi, J., & Xu, J. (2011). Can assessing for potential contribution of soil organic and inorganic components for butachlor sorption be improved? Journal of Environmental Quality, 40(6), 1705–1713. https://doi.org/10.2134/jeq2010.0340
Iturri, L. A. (2015). Evidencias de acidificación de suelos loéssicos agrícolas de Argentina [Tesis de doctorado, Universidad Nacional del Sur]. Repositorio Institucional Digital de la Biblioteca Central “Profesor Nicolás Matijevic” de la Universidad Nacional del Sur. https://repositoriodigital.uns.edu.ar/handle/123456789/2338
Jackson, M. L. (1956). Soil chemical analysis advanced course: a manual of methods useful for instruction and research in soil chemistry, physical chemistry of soil fertility and soil genesis. Parallel Press.
Jaramillo, D. F. (2002). Introducción a la ciencia del suelo. Universidad Nacional de Colombia. https://bibliotecadigital.ciren.cl/items/64c5b05c-f25a-4377-8220-73e6693914c0
Jones, B. (1999). Soil analysis handbook of reference methods. CRC Press.
Loaiza Loaiza, Y. P. (2021). Recuperación de un suelo ácido a partir de la aplicación de enmiendas de cal y humus de lombriz para la productividad de maíz en Coyaima Tolima [Tesis de grado, Universidad Distrital Francisco José de Caldas]. Repositorio Institucional de la Universidad Distrital Francisco José de Caldas. https://repository.udistrital.edu.co/items/fcc6d349-8639-4040-adae-8ace3686b2fe
Muhammad, N., Zvobgo, G., & Zhang, G.-P. (2019). A review: the beneficial effects and possible mechanisms of aluminum on plant growth in acidic soil. Journal of Integrative Agriculture, 18(7), 1518–1528. https://doi.org/10.1016/S2095-3119(18)61991-4
Raij, B. (2011). Fertilidade do solo e manejo de nutrientes. International Plant Nutrition Institute.
Ramírez Pedroso, J. F., González Cañizares, P. J., Rivera Espinosa, R., & Hernández Jiménez, A. (2021). Response of different Urochloa pastures to liming, cultivated in Sabana de Manacas region, Cuba. Cuban Journal of Agricultural Science, 55(2), 247–256. https://cjascience.com/index.php/CJAS/article/view/1016
Rosas-Patiño, G., Puentes-Paramo, Y. J., & Menjivar-Flores, J. C. (2017). Relación entre el pH y la disponibilidad de nutrientes para cacao en un Entisol de la Amazonia colombiana. Ciencia y Tecnología Agropecuaria, 18(3), 529–541. https://doi.org/10.21930/rcta.vol18_num3_art:742
SAS Institute Inc. (2002). User’s guide (Versión 9.1.3). SAS Institute Inc.
Sela, G. (2021). Fertilización y riego: teoría y mejores prácticas. Cropaia. https://cropaia.com/es/libro-fertilizacion-riego/
Soil Survey Division Staff. (1993). Soil survey manual (Agriculture Handbook No. 18). United States Department of Agriculture.
Soil Survey Staff. (2014). Claves para la taxonomía de suelos (12a ed.). Departamento de Agricultura de los Estados Unidos. https://www.nrcs.usda.gov/sites/default/files/2022-10/Spanish-Keys-to-Soil-Taxonomy.pdf
Soil Survey Staff. (2022). Keys to soil taxonomy (13th ed.). United States Department of Agriculture. https://www.nrcs.usda.gov/sites/default/files/2022-09/Keys-to-Soil-Taxonomy.pdf
Sosa-Rodrigues, B. A., & García-Vivas, Y. S. (2020). Contenido y distribución de macronutrientes en rambután en el litoral atlántico de Honduras. Agronomía Mesoamericana, 31(3), 761–772. http://dx.doi.org/10.15517/am.v31i3.40421
Tasilla Salazar, L. (2021). Variación de la reacción del suelo a la aplicación de cal de diferente granulometría en la Encañada - Cajamarca [Tesis de grado, Universidad Nacional de Cajamarca]. Repositorio Institucional de la Universidad Nacional de Cajamarca. https://repositorio.unc.edu.pe/handle/20.500.14074/4482
Terrones Cotrina, Y. (2024). Efecto de diferentes dosis y fuentes de encalado en las propiedades químicas de un suelo ácido, en el Distrito de Calquis - San Miguel - Cajamarca [Tesis de grado, Universidad Nacional de Cajamarca]. Repositorio Institucional de la Universidad Nacional de Cajamarca. https://repositorio.unc.edu.pe/handle/20.500.14074/7362
Vázquez, M. E., & Millán, G. J. (2017). Acidez del suelo: origen, diagnóstico, consecuencias y tratamiento. En M. E. Vázquez (Ed.), Manejo y conservación de suelos en especial énfasis en situaciones argentinas (pp. 229–271). Asociación Argentina de la Ciencia del Suelo.
Wan, W., Tan, J., Wang, Y., Qin, Y., He, H., Wu, H., Zuo, W., & He, D. (2020). Responses of the rhizosphere bacterial community in acidic crop soil to pH: changes in diversity, composition, interaction, and function. Science of the Total Environment, 700, Article 134418. https://doi.org/10.1016/j.scitotenv.2019.134418
Yan, L., Riaz, M., Liu, J., Yu, M., & Cuncang, J. (2022). The aluminum tolerance and detoxification mechanisms in plants; recent advances and prospects. Critical Reviews in Environmental Science and Technology, 52(9), 1491–152. https://doi.org/10.1080/10643389.2020.1859306
Additional Files
Published
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).





















