Toxicidad del glifosato sobre arveja (Pisum sativum) en suelo franco-arenoso con un consorcio bacteriano

Autores/as

DOI:

https://doi.org/10.15517/am.2025.10

Palabras clave:

biología del suelo, herbicida, microorganismo, Ochrobactrum anthropi, Pseudomonas aeruginosa

Resumen

Introducción. El glifosato (GLI) es un herbicida común que, cuando es aplicado en exceso, puede afectar tanto a las malezas de hoja ancha. Las bacterias promotoras del crecimiento de plantas pueden favorecer la resistencia y protección de los cultivos agrícolas por efecto del GLI. Objetivo. Evaluar la toxicidad del GLI en la raíz, tallo y raíz + tallo de Pisum sativum (arveja) en suelo franco-arenoso, con la presencia de las bacterias Ochrobactrum anthropi y Pseudomonas aeruginosa de forma individual y en un consorcio bacteriano conformado por ambos microorganismos. Materiales y métodos. El experimento se llevó a cabo en un invernadero de Lima, Perú. Se realizó un diseño completamente aleatorizado (DCA) con 32 tratamientos, cuyo suelo se mezcló con GLI y fue sometido a análisis edafológicos. Cuatro tratamientos fueron controles, 12 contenían suelo con O. anthropi y P. aeruginosa de forma individual y en un consorcio bacteriano, y 16 tratamientos contenían además P. sativum. Resultados. P. sativum expuesto a 8,71 mL L-1 y 17,42 mL L-1 de GLI mostró una reducción significativa en el crecimiento, particularmente en la biomasa fresca del tallo y la raíz, pero la aplicación de un consorcio bacteriano revirtió este efecto, lo que mejora el crecimiento. El GLI alteró el pH y la conductividad eléctrica del suelo, aunque la materia orgánica no cambió. El potasio disponible en el suelo aumentó con GLI, pero las bacterias redujeron este efecto, y el fósforo disponible incrementó en presencia de P. sativum y GLI a 17,42 mL L-1. Conclusiones. El GLI a las concentraciones más altas afectó el crecimiento del tallo y de la raíz del P. sativum, pero la inoculación bacteriana atenuó este efecto y modificó las propiedades del suelo. Esto subraya la relevancia de la interacción entre herbicida, microorganismos, y parámetros edafológicos en la agricultura.

Referencias

Abahonza de la Cruz, D. V., Benavides Mejía, O. A., Fajardo Escobar, C. P., & Huertas Delgado, J. L. (2022). Remediación de suelos degradados con glifosato a partir de enmiendas orgánicas a escala laboratorio. En J. L. Huertas Delgado, L. N. Torres Martinez, L. G. Lafaurie Gomez, & J. E. Insuasty Enríquez (Eds.), Las ciencias ambientales y su avance sin fronteras durante la pandemia (pp. 153–167). Editorial Unimar. https://doi.org/10.31948/editorialunimar.171.c222

Alache Lizarbe, L., Vega Córdova, E., & Lizarbe Córdova, J. (2020). Adaptación y eficiencia agronómica en el maíz amarillo duro (Zea mays L.) en diferentes localidades de la costa central y norte del Perú. Boletín Redipe, 9(11), 260–271. https://doi.org/10.36260/rbr.v9i11.1129

Ali, S., Abbas, Z., Rizwan, M., Zaheer, I. E., Yavaş, İ., Ünay, A., Abdel-Daim, M. M., Bin-Jumah, M., Hasanuzzaman, M., & Kalderis, D. (2020). Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review. Sustainability, 12(5), Article 1927. https://doi.org/10.3390/su12051927

Arispe Vázquez, J. L., Cadena Zamudio, D. A., Tamayo Esquer, L. M., Noriega Cantú, D. H., Toledo-Aguilar, R., Felipe-Victoriano, M., Barrón-Bravo, O. G., Reveles-Hernández, M., Ramírez Sánchez, S. E., & Espinoza Ahumada, C. A. (2023). A review of the current panorama of glyphosate resistance among weeds in Mexico and the rest of the world. Agro Productividad, 16(7), 135-149. https://doi.org/10.32854/agrop.v16i7.2618

Badii, M. H., & Varela, S. (2015). Insecticidas Organofosforados: Efectos sobre la Salud y el Ambiente. CULCYT, Cultura Científica y Tecnológica, 28(5), 5-17. https://erevistas.uacj.mx/ojs/index.php/culcyt/article/view/375

Bautista, J. I., & Arévalo, J. J. (2021). Determinación del carbono orgánico por el método químico y por calcinación. Ingeniería y Región, 26(2), 20-28. https://doi.org/10.25054/22161325.2527

Bhatt, P., Bhatt, K., Sharma, A., Zhang, W., Mishra, S., & Chen, S. (2021). Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Critical Reviews in Biotechnology, 41(3), 317-338. https://doi.org/10.1080/07388551.2020.1853032

Burbano, H. (2016). El suelo y su relación con los servicios ecosistémicos y la seguridad alimentaria. Revista de Ciencias Agrícolas, 33(2), 117-124. https://doi.org/10.22267/rcia.163302.58

Cantaro Segura, H. B. (2019). Reguladores de crecimiento en el cultivo de arveja (Pisum sativum L.) cv. Rondo en La Molina [Tesis de maestría, Universidad Nacional Agraria La Molina]. Repositorio de la Universidad Nacional Agraria La Molina. https://repositorio.lamolina.edu.pe/handle/20.500.12996/3893

Carrero, A., Zambrano, A., Hernández, E., Contreras, F., Machado, D., Bianchi, G., & Varela, R. (2015). Comparación de dos métodos de extracción de fósforo disponible en un suelo ácido. Avances en Química, 10(Especial), 29-33. http://erevistas.saber.ula.ve/index.php/avancesenquimica/article/view/6931

Castrejón Godínez, M. L., Tovar Sánchez, E., Valencia Cuevas, L., Rosas Ramírez, M. E., Rodríguez, A., & Mussali Galante, P. (2021). Glyphosate pollution treatment and microbial degradation alternatives, a review. Microorganisms, 9(11), 1–21. https://doi.org/10.3390/microorganisms9112322

Chávez Ortiz, P., Tapia Torres, Y., Larsen, J., & García Oliva, F. (2022). Glyphosate-based herbicides alter soil carbon and phosphorus dynamics and microbial activity. Applied Soil Ecology, 169, Article 104256. https://doi.org/10.1016/j.apsoil.2021.104256

Cheloufi, R., Messaadia, H., & Alayat, H. (2017). Biodegradation of herbicides by Pseudomonas aeruginosa in two soils types of the Bou Namoussa irrigable perimeter (Algerian Extreme Northeast): Effects on mineral nutrition (P2O5 and NO3). Journal of Materials and Environmental Science, 8(7), 2513–2521. https://www.jmaterenvironsci.com/Document/vol8/vol8_N7/270-JMES-2713-Cheloufi.pdf

Ezaka, E., Akintokun, A. K., Akintokun, P. O., Taiwo, L. B., Uthman, A. C. O., Oyedele, O. A., & Aluko, O. I. (2018). Glyphosate degradation by two plant growth promoting bacteria (PGPB) isolated from rhizosphere of maize. Microbiology Research Journal International, 26(6), 1–11. https://doi.org/10.9734/mrji/2018/v26i630081

Fernandes, B., Soares, C., Braga, C., Rebotim, A., Ferreira, R., Ferreira, J., Fidalgo, F., Pereira, R., & Cachada, A. (2020). Ecotoxicological assessment of a glyphosate-based herbicide in cover plants: Medicago sativa L. as a model species. Applied Sciences, 10(15), Article 5098. https://doi.org/10.3390/app10155098

Grewal, K., Kumar, S., Amin Bhat, M., & Dinesh. (2017). Comparison of chemical extractants for determination of available potassium. International Journal of Chemical Studies, 5(6), 417-423. https://www.chemijournal.com/archives/2017/vol5issue6/PartF/5-5-369-532.pdf

Gustinasari, K., Pandebesie, E. S., Syafei, A. D., & Hermana, J. (2021). Phytotoxicity of glyphosate-based herbicide to Typha angustifolia and Vetiveria zizanioides and its effect on rhizosphere bacteria. Nanotechnology for Environmental Engineering, 6(3), Article 45. https://doi.org/10.1007/s41204-021-00140-1

Gutiérrez, R. E., & Cáceres, C. A. (2018). Correlación entre la conductividad eléctrica medida en el extracto de saturación del suelo y en extractos con cinco relaciones sueloagua. ALFA, 2(6), 144–156. https://doi.org/10.33996/revistaalfa.v2i6.46

González Ortega, E., & Fuentes Ponce, M. H. (2022). Dinámica del glifosato en el suelo y sus efectos en la microbiota. Revista Internacional de Contaminación Ambiental, 38, 127–144. https://doi.org/10.20937/RICA.54197

Hébert, M., Fugère, V., & Gonzalez, A. (2018). The overlooked impact of rising glyphosate use on phosphorus loading in agricultural watersheds. Frontiers in Ecology and the Environment, 17(1), 48-56. https://doi.org/10.1002/fee.1985

Heck, K., De Marco, É. G., Duarte, M. W., Salamoni, S. P., & Van Der Sand, S. (2015). Pattern of multiresistant to antimicrobials and heavy metal tolerance in bacteria isolated from sewage sludge samples from a composting process at a recycling plant in southern Brazil. Environmental Monitoring and Assessment, 187(6), Article 328. https://doi.org/10.1007/s10661-015-4575-6

Hou, W. J., Zou, M., Li, B. F., & Yu, Y. C. (2020). Effect of glyphosate on soil physicochemical properties of Eucalyptus plantations. Scientia Silvae Sinicae, 56(8), 20-26. https://doi.org/10.11707/j.1001-7488.20200803

Hove‐Jensen, B., Zechel, D. L., & Jochimsen, B. (2014). Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiology and Molecular Biology Reviews, 78(1), 176-197. https://doi.org/10.1128/mmbr.00040-13

Ledoux, M., Hettiarachchy, N., Xiofan, Y., Howard, L., & Lee, S. (2020). Penetration of glyphosate into the food supply and the incidental impact on the honey supply and bees. Food Control, 109, Article 106859. https://doi.org/10.1016/j.foodcont.2019.106859

Mohy-Ud-Din, W., Chen, F., Bashir, S., Akhtar, M. J., Asghar, H. N., Farooqi, Z. U. R., Zulfiqar, U., Haider, F. U., Afzal, A., & Alqahtani, M.D. (2023). Unlocking the potential of glyphosate-resistant bacterial strains in biodegradation and maize growth. Frontiers in Microbiology, 19, Article 1285566. https://doi.org/10.3389/fmicb.2023.1285566

Morrás, H., Behrends Kraemer, F., Sainz, D., Fernández, P., & Chagas, C. (2022). Soil structure and glyphosate fate under no-till management in the Pampa region. II. Glyphosate and AMPA persistence and spatial distribution in the long-term. A conceptual model. Soil and Tillage Research, 223, Article 105471.

Obour, A. K., Stahlman, P. W., & Holman, J. D. (2016). Soil chemical properties as influenced by long-term glyphosate-resistant corn and soybean production in the central Great Plains, USA. Geoderma, 277, 1-9. https://doi.org/10.1016/j.geoderma.2016.04.029

Pedemonte, F. (2017). Problemática del uso de glifosato [Tesis de grado, Universidad Nacional Agraria La Molina]. Repositorio de la Universidad Nacional Agraria La Molina. https://repositorio.lamolina.edu.pe/handle/20.500.12996/3011

Pronk, G. J., Heister, K., Vogel, C., Babin, D., Bachmann, J., Ding, G. C., Ditterich, F., Gerzabek, M. H., Giebler, J., Hemkemeyer, M., Kandeler, E., Kunhi Mouvenchery, Y., Miltner, A., Poll, C., Schaumann, G. E., Smalla, K., Steinbach, A., Tanuwidjaja, I., Tebbe, C. C., … Kögel-Knabner, I. (2017). Interaction of minerals, organic matter, and microorganisms during biogeochemical interface formation as shown by a series of artificial soil experiments. Biology and Fertility of Soils, 53(1), 9–22. https://doi.org/10.1007/s00374-016-1161-1

Rossi, F., Carles, L., Donnadieu, F., Batisson, I., & Artigas, J. (2021). Glyphosate-degrading behavior of five bacterial strains isolated from stream biofilms. Journal of Hazardous Materials, 420, Article 126651. https://doi.org/10.1016/j.jhazmat.2021.126651

Shahid, M., Ahmed, B., Zaidi, A., & Khan, M. S. (2018). Toxicity of fungicides to Pisum sativum: A study of oxidative damage, growth suppression, cellular death and morpho-anatomical changes. RSC Advances, 67, 38483-38498. https://doi.org/10.1039/c8ra03923b

Silva, F. M. L., Duke, S. O., Dayan, F. E., & Velini, E. D. (2016). Low doses of glyphosate change the responses of soyabean to subsequent glyphosate treatments. Weed Research, 56(2), 124–136. https://doi.org/10.1111/wre.12189

Singh, S., Kumar, V., Sidhu, G., Datta, S., Singh, D., Koul, B., Singh, H., & Singh, J. (2019). Plant growth promoting rhizobacteria from heavy metal contaminated soil promote growth attributes of Pisum sativum L. Biocatalysis and Agricultural Biotechnology, 17, 665–671. https://doi.org/10.1016/j.bcab.2019.01.035

Singh, S., Kumar, V., Gill, J. P. K., Datta, S., Singh, S., Dhaka, V., Kapoor, D., Wani, A. B., Dhanjal, D. S., Kumar, M., Harikumar, S. L., & Singh, J. (2020). Herbicide glyphosate: Toxicity and microbial degradation. International Journal of Environmental Research and Public Health, 17(20), Article 7519. https://doi.org/10.3390/ijerph17207519

Smedbol, É., Lucotte, M., Maccario, S., Gomes, M. P., Paquet, S., Moingt, M., Mercier, L. L. C., Sobarzo, M. R. P., & Blouin, M. A. (2019). Glyphosate and Aminomethylphosphonic Acid Content in Glyphosate-Resistant Soybean Leaves, Stems, and Roots and Associated Phytotoxicity Following a Single Glyphosate-Based Herbicide Application. Journal of Agricultural and Food Chemistry, 67(22), 6133–6142. https://doi.org/10.1021/acs.jafc.9b00949

Suwardji, S., & Sudantha, I. M. (2021). The fate of glyphosate in soil and water: A review. Jurnal Penelitian Pendidikan IPA, 7(Special Issue), 389–399. https://doi.org/10.29303/jppipa.v7iSpecialIssue.971

Tofiño Rivera, A., Carbono Murgas, R., Melo Rios, A., & José Merini, L. (2020). Efecto del glifosato sobre el microbiota, calidad del suelo y cultivo de frijol biofortificado en el departamento del Cesar, Colombia. Revista Argentina de Microbiología, 52(1), 61-71. https://doi.org/10.1016/j.ram.2019.01.006

Villareal, R. (2018). Variación temporal de las propiedades físicas del suelo y su impacto en la dinámica del glifosato en suelos bajo siembra directa y labranza convencional [Tesis de doctorado, Universidad Nacional de La Plata]. Repositorio SEDICI de la Universidad de Nacional de La Plata. https://sedici.unlp.edu.ar/handle/10915/72021

Xu, X., Luo, Q., Zhang, N., Wu, Y., Wei, Q., Huang, Z., & Dong, C. (2024). Sandy loam soil maintains better physicochemical parameters and more abundant beneficial microbiomes than clay soil in Stevia rebaudiana cultivation. PeerJ, 12, Article e18010. https://doi.org/10.7717/peerj.18010

Descargas

Publicado

04-06-2025

Número

Sección

Artículos

Categorías

Cómo citar

Toxicidad del glifosato sobre arveja (Pisum sativum) en suelo franco-arenoso con un consorcio bacteriano. (2025). Agronomía Mesoamericana, 63041. https://doi.org/10.15517/am.2025.10

Artículos similares

1-10 de 27

También puede Iniciar una búsqueda de similitud avanzada para este artículo.