Effect of Bacillus amyloliquefaciens and Pseudomonas migulae on the growth of gooseberry (Physalis peruviana L.) seedlings

Authors

  • Camilo Rubén Beltrán-Acosta Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA). Centro de Investigación Tibaitatá. Mosquera, Cundinamarca, Colombia. Author https://orcid.org/0000-0002-6063-6962
  • Yimmy Alexander Zapata-Narváez Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA). Centro de Investigación Tibaitatá. Mosquera, Cundinamarca, Colombia. Author https://orcid.org/0000-0002-7586-209X
  • Duván Albeiro Millán-Montaño Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA). Centro de Investigación Sede Central. Mosquera, Cundinamarca, Colombia. Author https://orcid.org/0000-0001-5493-9177
  • Andrés Díaz-García Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA). Centro de Investigación Sede Central. Mosquera, Cundinamarca, Colombia. Author https://orcid.org/0000-0002-8638-7968

DOI:

https://doi.org/10.15517/am.v34i1.50669

Keywords:

rhizobacteria, endophytes, biomass, Solanaceae

Abstract

Introduction. Using plant growth-promoting bacteria is an alternative to integrate into cape gooseberry crop management strategies, through its application in seedling stages, in order to obtain more vigorous seedlings that can tolerate biotic and abiotic stresses under field conditions. Objective. To evaluate the plant growth-promoting activity and endophytic capacity of the rhizobacteria Bacillus amyloliquefaciens Bs006 and Pseudomonas migulae Pf014 inoculated during the seedling stage of cape gooseberry (Physalis peruviana L.). Materials and methods. An experiment was carried out from April to May 2018, in a greenhouse located at the Tibaitatá Research Center, Mosquera, Colombia, with a randomized complete block design and three replications. The rhizobacteria were inoculated individually in the substrate at a concentration of 1 x 108 CFU/mL and were quantified as response variables: dry biomass (g) of root, stem, and leaves, height (cm), leaf area (cm2), and number of leaves, and their endophytism was verified by evaluating the colonization of plant tissue. Results. B. amyloliquefaciens Bs006 stimulated the growth of cape gooseberry seedlings with respect to the control. It showed greater promotion capacity than P. migulae Pf014, since it increased the length of the plant by 34 %, the stem and root growth by 59% and 16 %, respectively. It increased root dry biomass of the root by 178 %, stem by 161 %, and leaves by 96 %. Bs006 was isolated from the interior of the plant tissue, which indicates its capacity as an endophyte in cape gooseberry. Conclusions. The positive response in all the agronomic variables evaluated with the application of B. amyloliquefaciens Bs006 indicates that this bacterium can be validated during the seedling stage of cape gooseberry.

Downloads

Download data is not yet available.

References

Ambrosini, A., de Souza, R., & Passaglia, L. M. P. (2016). Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant and Soil, 400(1-2), 193–207. https://doi.org/10.1007/s11104-015-2727-7

Blake, C., Nordgaard Christensen, M., & Kovács, Á. T. (2021). Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Molecular Plant-Microbe Interactions, 34(1), 15–25. https://doi.org/10.1094/MPMI-08-20-0225-CR

Caglar Kaymak, H. C. (2019) Potential of PGPR in Improvement of Environmental-Friendly Vegetable Production. In D. Maheshwari, & S. Dheeman (Eds.), Field crops: Sustainable management by PGPR. Sustainable Development and Biodiversity (Vol. 23, pp. 221–251). Springer, Cham. https://doi.org/10.1007/978-3-030-30926-8_9

Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42(5), 669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

Deketelaere, S., Tyvaert, L., França, S. C., & Höfte, M. (2017). Desirable traits of a good biocontrol agent against Verticillium Wilt. Frontiers in Microbiology, 8, Article 1186. https://doi.org/10.3389/fmicb.2017.01186

Díaz, A., Mejía, C., Cruz, L. C., & Sáenz, J. (2012). Producción masiva de rizobacterias. En A. Díaz (Eds.), Estrategias de control biológico de Fusarium oxysporum en el cultivo de uchuva (Physalis peruviana) (pp. 32–44). Corporación Colombiana de Investigación Agropecuaria. http://hdl.handle.net/20.500.12324/12610

Díaz, A., Smith, A., Mesa, P., Zapata, J., Caviedes, D., & Cotes, A. M. (2013). Control of Fusarium wilt in cape gooseberry by Trichoderma koningiopsis and PGPR. IOBC/WPRS Bulletin, 86, 89–94. https://www.cabdirect.org/cabdirect/abstract/20133172497

Díaz-García, A., García-Riaño, J., & Zapata-Narváez, J. (2015). Improvement of sporulation conditions of a new strain of Bacillus amyloliquefaciens in liquid fermentation. Advances in Bioscience and Biotechnology, 6(4), 302–310. http://doi.org/10.4236/abb.2015.64029

Fischer, G., Almanza-Merchán, P. J., & Miranda, D. (2014). Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura, 36(1), 1–15. https://doi.org/10.1590/0100-2945-441/13

Fischer, G., & Melgarejo, L. M. (2020). The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Revista Colombiana de Ciencias Hortícolas, 14(1), 76–89. https://doi.org/10.17584/rcch.2020v14i1.10893

Gámez, R. M., Rodríguez, F., Bernal, J. F., Agarwala, R., Landsman, D., & Mariño-Ramírez, L. (2015). Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Bacillus amyloliquefaciens BS006. Genome announcements, 3(6), Article e01391-15. https://doi.org/10.1128/genomeA.01391-15

Grageda-Cabrera, O. A., Díaz-Franco, A., Peña-Cabriales, J. J., & Vera-Nuñez, J. A. (2012). Impacto de los biofertilizantes en la agricultura. Revista Mexicana de Ciencias Agrícolas, 3(6), 1261–1274. https://doi.org/10.29312/remexca.v3i6.1376

Glick, B. R. (2012). Plant Growth-Promoting Bacteria: mechanisms and applications. Scientifica, 2012, Article 963401. https://doi.org/10.6064/2012/963401

Hallmann, J. (2001). Plant interactions with endophytic bacteria. In M. J. Jeger, & N. J. Spence (Eds.), Biotic interactions in plant-pathogen associations (pp. 87–119). CABI Publishing Series. https://doi.org/10.1079/9780851995120.0087

Hallmann J., & Berg, G. (2006). Spectrum and population dynamics of bacterial root endophytes. In B. J. E. Schulz, C. J. C. Boyle, & T. N. Sieber (Eds.), Microbial root endophytes. Soil biology (Vol. 9, pp. 15–31). Springer, Berlin. https://doi.org/10.1007/3-540-33526-9_2

Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., & Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43(10), 895–914. https://doi.org/10.1139/m97-131

Hamedi, J., & Mohammadipanah, F. (2014). Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. Journal of Industrial Microbiology and Biotechnology, 42(2), 157–171. https://doi.org/10.1007/s10295-014-1537-x

Hardoim, P. R., van Overbeek, L. S., & van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16(10), 463–471. https://doi.org/10.1016/j.tim.2008.07.008

Lodewyckx, C., Vangronsveld, Y., Porteous, F., Moore, E. R. B. Taghavi, S., Mezgeay, M., & van der Lelie, D. (2002). Endophytic Bacteria and Their Potential Applications. Critical Reviews in Plant Sciences, 21(6), 583–606. https://doi.org/10.1080/0735-260291044377

Martínez, F., Sarmiento, J., Fischer, G., & Jiménez, F. (2008). Efecto de la deficiencia de N, P, K, Ca, Mg y B en componentes de producción y calidad de la uchuva (Physalis peruviana L.). Agronomía Colombiana, 26(3), 389–398. https://revistas.unal.edu.co/index.php/agrocol/article/view/11470

Ministerio de Agricultura y Desarrollo Rural. (2022, mayo 18). Colombia es el mayor productor y exportador de uchuva a nivel mundial. https://bit.ly/3adKNtn

Mohamed Eid, A. M., Salim, S. S., El-Din Hassan, S., Ismail, M. A., & Fouda, A. (2019). Role of endophytes in plant health and abiotic stress management. In V. Kumar, R. Prasad, M. Kumar, & D. Choudhary (Eds.), Microbiome in plant health and disease: Challenges and Opportunities (pp. 119–144). Springer, Sigapore. https://doi.org/10.1007/978-981-13-8495-0_6

Núñez Zarantes, V. M., Sánchez-Betancourt, E. P., Mayorga Cubillos, F. G., Navas Arboleda, A. A., & Gómez Gil, L. F. (2016). Corpoica Dorada. Variedad de uchuva para Boyacá, Cundinamarca y Antioquia. Corporación Colombiana de Investigación Agropecuaria. https://repository.agrosavia.co/handle/20.500.12324/11565

Olanrewaju, O. S., Glick, B. R., & Oluranti Babalola, O. (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33, Article 197. https://doi.org/10.1007/s11274-017-2364-9

Pastor, N., Masciarelli, O., Fischer, S., Luna, V., & Rovera, M. (2016). Potential of Pseudomonas putida PCI2 for the protection of tomato plants against fungal pathogens. Current Microbiology, 73, 346–353. https://doi.org/10.1007/s00284-016-1068-y

Podile, A. R., & Kishore, G. K. (2007). Plant growth-promoting rhizobacteria. In S.S. Gnanamanickam (Ed.), Plant-associated bacteria (pp. 195–230). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4538-7_6

Puente, L. A., Pinto-Muñoz, C. A., Castro, E. S., & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733–1740. https://doi.org/10.1016/j.foodres.2010.09.034

Sturz, A. V., & Christie, B. R. (2003). Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil and Tillage Research, 72(2), 107–123. https://doi.org/10.1016/S0167-1987(03)00082-5

Tiing Lau, E., Tani, A., Yuen Khew, C., Qin Chua, Y., & San Hwang, S. (2020). Plant growth-promoting bacteria as potential bio-inoculants and biocontrol agents to promote black pepper plant cultivation. Microbiological Research, 240, Article 126549. https://doi.org/10.1016/j.micres.2020.126549

Tilak, K. V. B. R., Ranganayaki, N., Pal, K. K., De, R., Saxena, A. K., Shekhar Nautiyal, C., Mittal, S., Tripathi, A. K., & Johri, B. N. (2005). Diversity of plant growth and soil health supporting bacteria. Current Science, 89(1), 136–150. https://www.currentscience.ac.in/Volumes/89/01/0136.pdf

Tzec-Interián, J. A., Desgarennes, D., Carrión, G., Monribot-Villanueva, J. L., Guerrero-Analco, J. A., Ferrera-Rodríguez, O., Santos-Rodríguez, D. L., Liahut-Guin, N., Caballero-Reyes, G. E., & Ortiz-Castro, R. (2020). Characterization of plant growth-promoting bacteria associated with avocado trees (Persea americana Miller) and their potential use in the biocontrol of Scirtothrips perseae (avocado thrips). PLOS ONE, 15(4), Article e0231215. https://doi.org/10.1371/journal.pone.0231215

Uribe Gutiérrez, L. A, Cotes Prado, A. M., Zapata Narváez, J. A, Beltrán Acosta, C. R., Torres Torres, L. A., García Riaño, J. L., Santos Díaz, A. M., & Mejía Maldonado, C. N. (2021). Colección de microorganismos con interés en control biológico - AGROSAVIA. Corporación Colombiana de Investigación Agropecuaria. https://doi.org/10.15472/mwpqlq

Verma, P., Nath Yadav, A., Kumar, V., Pratap Singh, D., & Kumar Saxena, A. (2017). Beneficial plant-microbes interactions: Biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In D. Singh, H. Singh, & R. Prabha (Eds.), Plant-microbe interactions in Agro-ecological Perspectives (pp. 543–580). Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_22

Wan, T., Zhao, H., & Wang, W. (2018). Effects of the biocontrol agent Bacillus amyloliquefaciens SN16-1 on the rhizosphere bacterial community and growth of tomato. Journal of Phytopathology, 166(5), 324–332. https://doi.org/10.1111/jph.12690

Xu, W., Wang, F., Zhang, M., Ou, T., Wang, R., Strobel, G., Xiang, Z., Zhou, Z., & Xie, J. (2019). Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities. Microbiological Research, 229, Article 126328. https://doi.org/10.1016/j.micres.2019.126328

Published

13-12-2022

How to Cite

Beltrán-Acosta, C. R., Zapata-Narváez, Y. A., Millán-Montaño, D. A., & Díaz-García, A. (2022). Effect of Bacillus amyloliquefaciens and Pseudomonas migulae on the growth of gooseberry (Physalis peruviana L.) seedlings. Agronomía Mesoamericana, 34(1), 50669. https://doi.org/10.15517/am.v34i1.50669

Similar Articles

1-10 of 61

You may also start an advanced similarity search for this article.