Control of Sclerotium cepivorum and growth promotion in garlic (Allium sativum) whit antagonist microorganisms
DOI:
https://doi.org/10.15517/am.v33i2.46462Keywords:
white rot, biological control, growth promotionAbstract
Introduction. White rot produced by Sclerotium cepivorum causes losses greater than 50 % in garlic crops, the main control alternative is the application of chemical fungicides with limited efficacy, it is necessary to integrate alternatives that contribute to the development of disease management strategies. Objective. To evaluate the efficacy of antagonistic microorganisms applied individually and as a mixture against S. cepivorum in garlic. Materials and methods. This research was carried out under controlled conditions at the Corporacion Colombiana de Investigacion Agropecuaria (AGROSAVIA), during 2019. The soil was artificially infested with sclerotia (10 sclerotia/g soil). The efficacy of the individual use and in mixtures under different drench applications frequencies of three antagonists Trichoderma koningiopsis, Trichoderma asperellum, and Bacillus amyloliquefaciens, strains Th003, Th034, and Bs006, respectively, in the control of S. cepivorum in garlic and in the promotion of plant growth expressed as root, bulb, and foliar dry weight was evaluated. Results. The highest efficacy, with 65 % in disease control was obtained when applying Th003 at sowing and 15 das and with 56 % when applying the mixtures of Th003 + Th034 at sowing, Th003 + Th034 at sowing, 15, 30, and 45 das, and Th003 + Bs006 at sowing, 15 and 30 das, while Tebuconazole presented an efficacy of 35 %. Conclusion. The application of antagonists individually or in mixtures at different frequencies reduced mortality due to white rot in garlic. A positive effect on garlic plants growth was observed with the application of Th003 + Bs006 strains at sowing, 15 and 30 das, Th003 at sowing, Th003 at sowing and 15 dad, and Th034 + Bs006 at sowing, with higher values of dry weight with respect to the control.
Downloads
References
Amin, M., Tadele, S., & Selvaraj, T. (2014). White rot (Sclerotium cepivorum-Berk) an aggressive pest of onion and garlic in Ethiopia: An overview. Journal of Agricultural Biotechnology and Sustainable Development, 6(1), 6-15. https://doi.org/10.5897/JABSD2013.0210
Chi-Chu, Lo. (2010). Effect of pesticides on soil microbial community. Journal of Environmental Science and Health, Part B, 45(5), 348–359. https://doi.org/10.1080/03601231003799804
Cotes, A. M. (2011). Aislamiento, selección y mecanismos de acción de Trichoderma koningiopsis. En M. I. Gómez, & A. M. Santos (Ed.), Uso de Trichoderma koningiopsis Th003 para el control de fitopatógenos en hortalizas (pp. 9-18). Corporación Colombiana de Investigación Agropecuaria. http://hdl.handle.net/20.500.12324/1780
Cycoń, M., Piotrowska-Seget, Z., Kaczyńska, A., & Kozdrój, J. (2006). Microbiological characteristics of a sandy loam soil exposed to tebuconazole and λ-cyhalothrin under laboratory conditions. Ecotoxicology, 15, 639–646. https://doi.org/10.1007/s10646-006-0099-8
Díaz-García, A., García-Riaño, J., & Zapata-Narváez, J. (2015). Improvement of sporulation conditions of a new strain of Bacillus amyloliquefaciens in liquid fermentation. Advances in Bioscience and Biotechnology, 6(4), 302-310. http://doi.org/10.4236/abb.2015.64029
El Komy, M. H., Saleh, A. A., Eranthodi, A., & Molan, Y. Y. (2015). Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. The Plant Pathology Journal, 31(1), 50–60. https://doi.org/10.5423/PPJ.OA.09.2014.0087
Gámez, R., Cardinale, M., Montes, M., Ramirez, S., Schnell, S., & Rodriguez, F. (2018). Screening, plant growth promotion and root colonization pattern of two rhizobacteria (Pseudomonas fluorescens Ps006 and Bacillus amyloliquefaciens Bs006) on banana c.v. Williams (Musa acuminata Colla). Microbiological Research, 2(20), 12-20. https://doi.org/10.1016/j.micres.2018.11.006
Jaimes Suárez, Y. Y., Moreno Velandia. C. A., & Cotes Prado, A.M. (2009). Inducción de resistencia sistémica contra Fusarium oxysporum en tomate por Trichoderma koningiopsis Th003. Acta Biológica Colombiana, 14(3), 111-120. https://revistas.unal.edu.co/index.php/actabiol/article/view/1344
Koller, M., Rayns, F., Cubison, S., Schmutz, U., Messelink, G. J., & Voogt, W. (2016). Guidelines for experimental practice in organic greenhouse horticulture. BioGreenhouse. https://doi.org/10.18174/373581
Lourenço, V., Vieira, B. S., Lopes, E. A., & Villalta, O. N. (2018). Etiology, epidemiology, and management of white rot on onion and garlic: Current knowledge and future directions for Brazil. Científica, 46(3), 241-256. http://doi.org/10.15361/1984-5529.2018v46n3p241-256
O’Connor, P., Manjarrez, M., & Smith, S. E. (2009). The fate and efficacy of benomyl applied to field soils to suppress activity of arbuscular mycorrhizal fungi. Canadian Journal of Microbiology, 55(7), 901–904. https://doi.org/10.1139/W09-035
Pinzón, H., Escobar, H., & Parra, M. (2012). Producción de semilla garantizada de ajo. Universidad de Bogotá Jorge Tadeo Lozano. https://www.utadeo.edu.co/sites/tadeo/files/node/publication/field_attached_file/pdf-_produccion_de_semilla_garantizada_de_ajo-11-15.pdf
Santos, A., García, M., Cotes, A. M., & Villamizar, L. (2012). Efecto de la formulación sobre la vida útil de los bioplaguicidas a base de dos aislados colombianos de Trichoderma koningiopsis Th003 y Trichoderma asperellum Th034. Revista Iberoamericana de Micología, 29(3), 150-156. https://doi.org/10.1016/j.riam.2011.11.002
Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment, 31(3), 446-459. https://doi.org/10.1080/13102818.2017.1286950
Simbaqueba, J., Cotes, A. M., & Barrero, L. S. (2011). Linkage mapping of candidate genes for induce resistance and growth promotion by Trichoderma koningiopsis (Th003) in tomato Solanum lycopersicum. Acta Biológica Colombiana, 16(2), 47-62. https://revistas.unal.edu.co/index.php/actabiol/article/view/14797
Singh, A., Shukla, N., Kabadwal, B., Tewari, A., & Kumar, J. (2018). Review on Plant- Trichoderma -Pathogen interaction. International Journal of Current Microbiology and Applied Sciences, 7(2), 2382–2397. https://doi.org/10.20546/ijcmas.2018.702.291
Smith, A., Beltrán, C. A., Kusunoki, M. Cotes, A. M., Motohashi, K., Kondo, T., & Deguchi, M. (2013). Diversity of soil-dwelling Trichoderma in Colombia and their potential as biocontrol agents against the phytopathogenic fungus Sclerotinia sclerotiorum (Lib.) de Bary. Journal of General Plant Pathology, 79(1), 74-85. https://doi.org/10.1007/s10327-012-0419-1
Tejada, M., Gómez, I., García-Martínez, A. M., Osta, P., & Parrado, J. (2011). Effects of Prochloraz fungicide on soil enzymatic activities and bacterial communities. Ecotoxicology and Environmental Safety, 74(6), 1708–1714. https://doi.org/10.1016/j.ecoenv.2011.04.016
Velásquez-Valle, R., & Reveles-Hernández, M. (2016). Efecto de agentes de manejo alternativo sobre el desarrollo de pudrición blanca de ajo. Revista Mexicana de Micología, 44, 41-47.
Velásquez Valle, R., Reveles Hernández, M., Medina Aguilar, M. M., & Amador Ramírez, M. D. (2012). Efecto de la preparación del suelo en la dispersión de esclerocios de Sclerotium cepivorum Berk. Revista Mexicana de Fitopatología, 30(2),150-154.
Vujanovic, V., & Goh, Y. K. (2011). Sphaerodes mycoparasitica biotrophic mycoparasite of 3-acetyldeoxynivalenol- and 15-acetyldeoxynivalenol-producing toxigenic Fusarium graminearum chemotypes. FEMS Microbiology Letters, 316(2), 136–143. https://doi.org/10.1111/j.1574-6968.2010.02201.x
Xu, X. M., & Jeger, M. J. (2013). Theoretical modeling suggests that synergy may result from combined use of two biocontrol agents for controlling foliar pathogens under spatial heterogeneous conditions. Phytopathology, 103(8), 768-775. https://doi.org/10.1094/phyto-10-12-0266-Rr
Yang, C., Hamel, C., Vujanovic, V., & Gan, Y. (2011). Fungicide: Modes of Action and Possible Impact on Nontarget Microorganisms. ISRN Ecology, 2011, 1–8. https://doi.org/10.5402/2011/130289
Zapata, J., & Díaz, A. (2012). Evaluaciones en invernadero y selección de prototipos a base de rizobacterias. En A. Díaz (Ed.), Estrategias de control biológico de Fusarium oxysporum en el cultivo de uchuva (pp. 57-63). Corporación Colombiana de Investigación Agropecuaria. http://hdl.handle.net/20.500.12324/12610
Zapata-Narváez, Y. A., Gómez-Marroquín, M. R., & Botina-Azain, B. L. (2020). Evaluation of microbial antagonists and essential oils to control Sclerotium cepivorum in garlic under controlled conditions. Mexican Journal of Phytopathology, 38(2), 182-197. https://doi.org/10.18781/r.mex.fit.2002-2
Additional Files
Published
Issue
Section
License
Copyright (c) 2022 Yimmy Alexander Zapata-Narváez, Magda Rocío Gómez-Marroquín (Autor/a)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).





















