Semen analysis in precision farming in the 21st century
DOI:
https://doi.org/10.15517/am.v34i2.51957Keywords:
animal reproduction, andrology, spermatozoa, semenAbstract
Introduction. Assisted reproduction of animals traces its origins in the domestication of livestock species useful to humans. The consequent artificial selection processes allowed the development of biotechnological techniques that contributed to the improvement of animal production capacities. Objective. To contextualize the seminal analysis in precision farming in the 21st century. Development. The visualization of spermatozoa under the microscope can be considered as the first step in the advent of reproductive biotechnology and the basis for the development of assisted reproductive techniques. With the improvement of microscopy methods, it was possible to characterize male gametes, which meant a significant advance in artificial insemination technology. The turning point marked by the development of sperm conservation techniques implied a substantive change in the development of these technologies in livestock species, either with cryopreserved or refrigerated semen. These methods are of high value in the case of threatened species since germplasm banks can be created for genetic conservation and rescue of species at risk of extinction. Semen analysis has been developed alongside with assisted reproduction techniques and today it is considered a relevant technique in animal reproduction biotechnology, which has been perfected through the advancement of science and technology, optical physics, and computing. Conclusion. Seminal analysis has undergone a paradigm shift by rejecting obsolete techniques of subjective evaluation of semen quality and adopting objective methods of semen evaluation, through the analysis of large volumes of data and motility, kinematics, morphometrics, morphological, and DNA fragmentation variables, which allow a better characterization of the ejaculates of breeders in artificial insemination centers.
Downloads
References
Ahmed, H. M. M., Hildebrand, L., & Wimmer, E. A. (2019). Improvement and use of CRISPR/Cas9 to engineer a sperm-marking strain for the invasive fruit pest Drosophila suzukii. BMC Biotechnology, 19, Article 85. https://doi.org/10.1186/S12896-019-0588-5
Amann, R. P., & Waberski, D. (2014). Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology, 81(1), Article 5–17.e3. https://doi.org/10.1016/j.theriogenology. 2013.09.004
Anel-Lopez, L., Ortega-Ferrusola, C., Álvarez, M., Borragán, S., Chamorro, C., Peña, F. J., Morrell, J., Anel, L., & de Paz, P. (2017). Improving sperm banking efficiency in endangered species through the use of a sperm selection method in brown bear (Ursus arctos) thawed sperm. BMC Veterinary Research, 13, Article 200. https://doi.org/10.1186/s12917-017-1124-2
Ataei, A., Lau, A., & Asghar, W. (2021). A microfluidic sperm-sorting device based on rheotaxis effect. Microfluidics and Nanofluidics, 25, Article 52. https://doi.org/10.1007/s10404-021-02453-8
Aurich, J., Kuhl, J., Tichy, A., & Aurich, C. (2020). Efficiency of semen cryopreservation in Stallions. Animals, 10(6), Article 1033. https://doi.org/10.3390/ANI10061033
Bailey, J., Morrier, A., & Cormier, N. (2003). Semen cryopreservation: Successes and persistent problems in farm species. Canadian Journal of Animal Science, 83(1), 393–401. https://doi.org/10.4141/A03-024
Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences of the United States of America, 115(25), 6506–6511. https://doi.org/10.1073/PNAS.1711842115
Barbas, J. P., & Mascarenhas, R. D. (2008). Cryopreservation of domestic animal sperm cells. Cell and Tissue Banking, 10, 49–62. https://doi.org/10.1007/S10561-008-9081-4
Barquero, V., Roldan, E. R. S., Soler, C., Vargas-Leitón, B., Sevilla, F., Camacho, M., & Valverde, A. (2021). Relationship between fertility traits and kinematics in clusters of boar ejaculates. Biology, 10(7), Article 595. https://doi.org/10.3390/BIOLOGY10070595
Barquero, V., Roldan, E. R. S., Soler, C., Yániz, J. L., Camacho, M., & Valverde, A. (2021). Predictive capacity of boar sperm morphometry and morphometric sub-populations on reproductive success after artificial insemination. Animals, 11(4), Article 920. https://doi.org/10.3390/ANI11040920
Barquero, V., Sevilla, F., Calderón-Calderón, J., Madrigal-Valverde, M., Camacho, M., Cucho, H., & Valverde, A. (2021). Condiciones óptimas del análisis CASA-Mot del semen de verraco: efecto de la tasa de fotogramas para diferentes cámaras y campos de recuento espermático. Revista de Investigaciones Veterinarias del Perú, 32(5), Artículo e19832. https://doi.org/10.15381/rivep.v32i5.19832
Barquero, V., Soler, C., Sevilla, F., Calderón-Calderón, J., & Valverde, A. (2021). A Bayesian analysis of boar spermatozoa kinematics and head morphometrics and their relationship with litter size fertility variables. Reproduction in Domestic Animals, 56(7), 1024–1033. https://doi.org/10.1111/RDA.13946
Bhalakiya, N., Haque, N., Patel, D., Chaudhari, A., Patel, G., Madhavatar, M., Patel, P., Hossain, S., & Kumar, R. (2018). Sperm sexing and its application in livestock sector. International Journal of Current Microbiology and Applied Sciences, 2018(Special 7), 259–272. https://www.ijcmas.com/special/7/Nikita%20Bhalakiya,%20et%20al.pdf
Bompart, D., García-Molina, A., Valverde, A., Caldeira, C., Yániz, J., Núñez de Murga, M., & Soler, C. (2018). CASA-Mot technology: how results are affected by the frame rate and counting chamber. Reproduction, Fertility and Development, 30(6), 810–819. https://doi.org/10.1071/RD17551
Bompart, D., Vázquez, R., Gómez, R., Valverde, A., Roldán, E., García-Molina, A., & Soler, C. (2019). Combined effects of type and depth of counting chamber, and rate of image frame capture, on bull sperm motility and kinematics. Animal Reproduction Science, 209, Article 106169. https://doi.org/10.1016/J.ANIREPROSCI.2019.106169
Caldeira, C., García-Molina, A., Valverde, A., Bompart, D., Hassane, M., Martin, P., & Soler, C. (2018). Comparison of sperm motility subpopulation structure among wild anadromous and farmed male Atlantic salmon (Salmo salar) parr using a CASA system. Reproduction, Fertility and Development, 30(6), 897–906. https://doi.org/10.1071/RD17466
Caldeira, C., Hernández-Ibáñez, S., Valverde, A., Martin, P., Herranz-Jusdado, J. G., Gallego, V., Asturiano, J. F., Dzyuba, B., Pšenička, M., & Soler, C. (2019). Standardization of sperm motility analysis by using CASA-Mot for Atlantic salmon (Salmo salar), European eel (Anguilla anguilla) and Siberian sturgeon (Acipenser baerii). Aquaculture, 502, 223–231. https://doi.org/10.1016/j.aquaculture.2018.12.001
Caldeira, C., Hernández-Ibánez, S., Vendrell, A., Valverde, A., García-Molina, A., Gallego, V., Asturiano, J. F., & Soler, C. (2022). Characterisation of European eel (Anguilla anguilla) spermatozoa morphometry using Trumorph tool in fixed and non-fixed samples. Aquaculture, 553, Article 738047. https://doi.org/10.1016/J.AQUACULTURE.2022.738047
Chen, D. -B., Zhang, R. -S., Bian, H. -X., Li, Q., Xia, R. -X., Li, Y. -P., Liu, Y. -Q., & Lu, C. (2019). Comparative mitochondrial genomes provide new insights into the true wild progenitor and origin of domestic silkworm Bombyx mori. International Journal of Biological Macromolecules, 131, 176–183. https://doi.org/10.1016/J.IJBIOMAC.2019.03.002
Cherniha, R. M., & Davydovych, V. V. (2019). A hunter-gatherer-farmer population model: Lie symmetries, exact solutions and their interpretation. European Journal of Applied Mathematics, 30(2), 338–357. https://doi.org/10.1017/S0956792518000104
Cohen, I. G., Sherkow, J. S., & Adashi, E. Y. (2020). Gene Editing Sperm and Eggs (not Embryos): Does it make a legal or ethical difference? The Journal of Law, Medicine & Ethics: A Journal of the American Society of Law, Medicine & Ethics, 48(3), 619–621. https://doi.org/10.1177/1073110520958891
Comizzoli, P. (2017). Biobanking and fertility preservation for rare and endangered species. Animal Reproduction, 14, 30–33. http://doi.org/10.21451/1984-3143-AR889
Contreras, J., Raventós, H., Rodríguez, G., & Leandro, M. (2014). Call for a change in research funding priorities: the example of mental health in Costa Rica. Revista Panamericana de Salud Publica, 36(4), 266–269. https://iris.paho.org/handle/10665.2/9692
Cooper, T., Björndahl, L., Vreeburg, J., & Nieschlag, E. (2002). Semen analysis and external quality control schemes for semen analysis need global standardization. International Journal of Andrology, 25(5), 306–311. https://doi.org/10.1046/j.1365-2605.2002.00370.x
Cooper, T., Yeung, C. -H., Fetic, S., Sobhani, A., & Nieschlag, E. (2004). Cytoplasmic droplets are normal structures of human sperm but are not well preserved by routine procedures for assessing sperm morphology. Human Reproduction, 19(10), 2283–2288. https://doi.org/10.1093/HUMREP/DEH410
Cucho, H., López, Y., Caldeira, C., Valverde, A., Ordóñez, C., & Soler, C. (2019). Comparison of three different staining methods for the morphometric characterization of Alpaca (Vicugna pacos) sperm, using ISAS ® CASA-Morph system. Nova Biologica Reperta, 6(3), 284–291. https://doi.org/10.29252/nbr.6.3.284
De Ambrogi, M., Ballester, J., Saravia, F., Caballero, I., Johannisson, A., Wallgren, M., Andersson, M., & Rodriguez-Martinez, H. (2006). Effect of storage in short- and long-term commercial semen extenders on the motility, plasma membrane and chromatin integrity of boar spermatozoa. International Journal of Andrology, 29(5), 543–552. https://doi.org/10.1111/j.1365-2605.2006.00694.x
Diamond, J. (2002). Evolution, consequences and future of plant and animal domestication. Nature, 418, 700–707. https://doi.org/10.1038/nature01019
Dirrigl, F. J., Brush, T., Morales-Muñiz, A., & Bartosiewicz, L. (2020). Prehistoric and historical insights in avian zooarchaeology, taphonomy and ancient bird use. Archaeological and Anthropological Sciences, 12, Article 57. https://doi.org/10.1007/s12520-020-01016-2
Donkin, I., & Barrès, R. (2018). Sperm epigenetics and influence of environmental factors. Molecular Metabolism, 14, 1–11. https://doi.org/10.1016/J.MOLMET.2018.02.006
Dziekońska, A., Świąder, K., Koziorowska-Gilun, M., Mietelska, K., Zasiadczyk, L., & Kordan, W. (2017). Effect of boar ejaculate fraction, extender type and time of storage on quality of spermatozoa. Polish Journal of Veterinary Sciences, 20(1), 77–84. https://doi.org/10.1515/PJVS-2017-0011
Edwards, R. G., Steptoe, P. C., & Purdy, J. M. (1980). Establishing full-term human pregnancies using cleaving embryos grown in vitro. British Journal of Obstetrics and Gynaecology, 87(9), 737–756. https://doi.org/10.1111/J.1471-0528.1980.TB04610.X
Feugang, J. M., Rhoads, C. E., Mustapha, P. A., Tardif, S., Parrish, J. J., Willard, S. T., & Ryan, P. L. (2019). Treatment of boar sperm with nanoparticles for improved fertility. Theriogenology, 137, 75–81. https://doi.org/10.1016/J.THERIOGENOLOGY.2019.05.040
Frantz, L. A. F., Bradley, D. G., Larson, G., & Orlando, L. (2020). Animal domestication in the era of ancient genomics. Nature Reviews Genetics, 21, 449–460. https://doi.org/10.1038/S41576-020-0225-0
Gacem, S., Bompart, D., Valverde, A., Catalán, J., Miró, J., & Soler, C. (2020). Optimal frame rate when there were stallion sperm motility evaluations and determinations for kinematic variables using CASA-Mot analysis in different counting chambers. Animal Reproduction Science, 223, Article 106643. https://doi.org/10.1016/j.anireprosci.2020.106643
Gacem, S., Catalán, J., Valverde, A., Soler, C., & Miró, J. (2020). Optimization of Casa-mot analysis of donkey sperm: Optimum frame rate and values of kinematic variables for different counting chamber and fields. Animals, 10(11), Article 1993. https://doi.org/10.3390/ani10111993
Gallagher, M. T., Cupples, G., Ooi, E. H., Kirkman-Brown, J. C., & Smith, D. J. (2019). Rapid sperm capture: high-throughput flagellar waveform analysis. Human Reproduction, 34(7), 1173–1185. https://doi.org/10.1093/humrep/dez056
García-Molina, A., Navarro, N., Valverde, A., Bompart, D., Caldeira, C., Vendrell, A., & Soler, C. (2022). Human kinematic and morphometric sperm subpopulation analysis using CASA technology: A new approach to spermatozoa classification. Revista Internacional de Andrología, 20(4), 257–265. https://doi.org/10.1016/J.ANDROL.2021.05.003
Harari, Y. N. (2014). Sapiens: A brief history of humankind. Vintage-Books.
Hernández-Caravaca, I., Llamas-López, P. J., Izquierdo-Rico, M. J., Soriano-Úbeda, C., Matás, C., Gardón, J. C., & García-Vázquez, F. A. (2017). Optimization of post-cervical artificial insemination in gilts: Effect of cervical relaxation procedures and catheter type. Theriogenology, 90, 147–152. https://doi.org/10.1016/J.THERIOGENOLOGY.2016.11.027
Holt, W. V., Cummins, J. M., & Soler, C. (2018). Computer-assisted sperm analysis and reproductive science; a gift for understanding gamete biology from multidisciplinary perspectives. Reproduction, Fertility and Development, 30(6), iii–v. https://doi.org/10.1071/RDV30N6_FO
Hunter, P. (2018). The genetics of domestication: Research into the domestication of livestock and companion animals sheds light both on their “evolution” and human history. EMBO Reports, 19(2), 201–205. https://doi.org/10.15252/EMBR.201745664
Hwang, B., Lee, D., Hwang, S. J., Baek, J. H., & Kim, B. (2019). Rheotaxis based high-throughput motile sperm sorting device. International Journal of Precision Engineering and Manufacturing, 20, 1037–1045. https://doi.org/10.1007/s12541-019-00144-7
Iftikhar, M., Noureen, A., Uzair, M., Jabeen, F., Daim, M. A., & Cappello, T. (2021). Perspectives of nanoparticles in male infertility: Evidence for induced abnormalities in sperm production. International Journal of Environmental Research and Public Health, 18(4), Article 1758. https://doi.org/10.3390/IJERPH18041758
Ivanoff, E. I. (1922). On the use of artificial insemination for zootechnical purposes in Russia. The Journal of Agricultural Science, 12(3), 244–256. https://doi.org/10.1017/S002185960000530X
Jaynes, E. T. (2003). Probability theory: The logic of science (Annotated ed.). Cambridge University Press.
Jovičić, M., Chmelíková, E., & Sedmíková, M. (2020). Cryopreservation of boar semen. Czech Journal of Animal Science, 65(4), 115–123. https://doi.org/10.17221/47/2020-CJAS
Karbalaei, A., & Cho, H. J. (2018). Microfluidic Devices Developed for and Inspired by Thermotaxis and Chemotaxis. Micromachines, 9(4), Article 149. https://doi.org/10.3390/MI9040149
Kedia, G., Mussweiler, T., & Linden, D. E. J. (2014). Brain mechanisms of social comparison and their influence on the reward system. NeuroReport, 25(16), 1255–1265. https://doi.org/10.1097/WNR.0000000000000255
Khodamoradi, M., Rafizadeh Tafti, S., Mousavi Shaegh, S. A., Aflatoonian, B., Azimzadeh, M., & Khashayar, P. (2021). Recent microfluidic innovations for sperm sorting. Chemosensors, 9(6), Article 126. https://doi.org/10.3390/CHEMOSENSORS9060126
Kruska, D. (1993). Evidence of decrease in brain size in ranch mink, Mustela vison f. dom., during subadult postnatal ontogenesis. Brain, Behavior and Evolution, 41(6), 303–315. https://doi.org/10.1159/000113851
Kurtz, S., & Petersen, B. (2019). Pre-determination of sex in pigs by application of CRISPR/Cas system for genome editing. Theriogenology, 137, 67–74. https://doi.org/10.1016/J.THERIOGENOLOGY.2019.05.039
Larson, G., & Fuller, D. Q. (2014). The evolution of animal domestication. Annual Review of Ecology, Evolution, and Systematics, 45, 115–136. https://doi.org/10.1146/ANNUREV-ECOLSYS-110512-135813
Maroto-Morales, A., García-Álvarez, O., Ramón, M., Martínez-Pastor, F., Fernández-Santos, M. R., Soler, A., & Garde, J. J. (2016). Current status and potential of morphometric sperm analysis. Asian Journal of Andrology, 18(6), 863–870. https://doi.org/10.4103/1008-682X.187581
Martinez-Alborcia, M., Valverde, A., Parrilla, I., Vazquez, J. M., Martinez, E. A., & Roca, J. (2012). Detrimental effects of non-functional spermatozoa on the freezability of functional spermatozoa from Boar Ejaculate. PLoS ONE, 7(5), Article e36550. https://doi.org/10.1371/journal.pone.0036550
Marzano, G., Chiriacò, M. S., Primiceri, E., Dell’Aquila, M. E., Ramalho-Santos, J., Zara, V., Ferramosca, A., & Maruccio, G. (2020). Sperm selection in assisted reproduction: A review of established methods and cutting-edge possibilities. Biotechnology Advances, 40, Article 107498. https://doi.org/10.1016/J.BIOTECHADV.2019.107498
Milovanov, V. K., & Sokolovskaya, I. I. (1947). Stockbreeding and the artificial insemination of livestock. Hutchinson’s Scientific and Technical Publications.
Moore, J. A. (1999). Science as a way of knowing: the foundations of modern Biology. Harvard University Press.
Morrell, J. M., & Rodriguez-Martinez, H. (2011). Practical Applications of Sperm Selection Techniques as a Tool for Improving Reproductive Efficiency. Veterinary Medicine International, 2011, Article 894767. https://doi.org/10.4061/2011/894767
Nadri, T., Towhidi, A., Zeinoaldini, S., Martínez-Pastor, F., Mousavi, M., Noei, R., Tar, M., & Mohammadi Sangcheshmeh, A. (2019). Lecithin nanoparticles enhance the cryosurvival of caprine sperm. Theriogenology, 133, 38–44. https://doi.org/10.1016/J.THERIOGENOLOGY.2019.04.024
Neculai-Valeanu, A. -S., & Ariton, A. M. (2021). Game-changing approaches in sperm sex-sorting: microfluidics and nanotechnology. Animals, 11(4), Article 1182. https://doi.org/10.3390/ANI11041182
Nosrati, R., Vollmer, M., Eamer, L., San Gabriel, M. C., Zeidan, K., Zini, A., & Sinton, D. (2014). Rapid selection of sperm with high DNA integrity. Lab on a Chip, 14(6), 1142–1150. https://doi.org/10.1039/C3LC51254A
Olden, J. D. (2006). Biotic homogenization: a new research agenda for conservation biogeography. Journal of Biogeography, 33(12), 2027–2039. https://doi.org/10.1111/J.1365-2699.2006.01572.X
Ombelet, W., & Robays, J. Van. (2015). Artificial insemination history: hurdles and milestones. Facts, Views & Vision in ObGyn, 7(2), 137–143. https://fvvo.eu/assets/534/08-Ombelet%20et%20al.pdf
Palermo, G., Joris, H., Devroey, P., & Van Steirteghem, A. C. (1992). Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. The Lancet, 340(8810), 17–18. https://doi.org/10.1016/0140-6736(92)92425-F
Patil, S., Kumar, P., Singh, G., Bala, R., Jerome, A., Patil, C. S., Kumar, D., Singh, S., & Sharma, R. K. (2020). ‘Semen dilution effect’ on sperm variables and conception rate in buffalo. Animal Reproduction Science, 214, Article 106304. https://doi.org/10.1016/j.anireprosci.2020.106304
Pedrosa, S., Uzun, M., Arranz, J. -J., Gutiérrez-Gil, B., San Primitivo, F., & Bayón, Y. (2005). Evidence of three maternal lineages in near eastern sheep supporting multiple domestication events. Proceedings of the Royal Society B: Biological Sciences, 272(1577), 2211–2217. https://doi.org/10.1098/RSPB.2005.3204
Pérez-Cerezales, S., Laguna-Barraza, R., Chacón De Castro, A., Sánchez-Calabuig, M. J., Cano-Oliva, E., de Castro-Pita, F. J., Montoro-Buils, L., Pericuesta, E., Fernández-González, R., & Gutiérrez-Adán, A. (2018). Sperm selection by thermotaxis improves ICSI outcome in mice. Scientific Reports, 8, Article 2902. https://doi.org/10.1038/S41598-018-21335-8
Puerta Suárez, J., du Plessis, S. S., & Cardona Maya, W. D. (2018). Spermatozoa: A Historical Perspective. International Journal of Fertility & Sterility, 12(3), 182–190. https://doi.org/10.22074/IJFS.2018.5316
Ramón, M., & Martínez-Pastor, F. (2018). Implementation of novel statistical procedures and other advanced approaches to improve analysis of CASA data. Reproduction, Fertility and Development, 30(6), 860–866. https://doi.org/10.1071/RD17479
Rehkämper, G., Frahm, H. D., & Cnotka, J. (2008). Mosaic evolution and adaptive brain component alteration under domestication seen on the background of evolutionary theory. Brain, Behavior and Evolution, 71(2), 115–126. https://doi.org/10.1159/000111458
Reza Raveshi, M. R., Abdul Halim, M. S., Agnihotri, S. N., O’Bryan, M. K., Neild, A., & Nosrati, R. (2021). Curvature in the reproductive tract alters sperm–surface interactions. Nature Communications, 12, Article 3446. https://doi.org/10.1038/s41467-021-23773-x
Rodríguez-Martínez, H., Saravia, F., Wallgren, M., Tienthai, P., Johannisson, A., Vázquez, J. M., Martínez, E., Roca, J., Sanz, L., & Calvete, J. J. (2005). Boar spermatozoa in the oviduct. Theriogenology, 63(2), 514–535. https://doi.org/10.1016/J.THERIOGENOLOGY.2004.09.028
Roldan, E. R. S., Gomendio, M., & Vitullo, A. D. (1992). The evolution of eutherian spermatozoa and underlying selective forces: female selection and sperm competition. Biological Reviews of the Cambridge Philosophical Society, 67(4), 551–593. https://doi.org/10.1111/j.1469-185X.1992.tb01193.x
Rossi, P. (1990). Francis Bacon. De la magia a la ciencia. Alianza Editorial.
Sadeghi, S., García-Molina, A., Celma, F., Valverde, A., Fereidounfar, S., & Soler, C. (2016). Morphometric comparison by the ISAS® CASA-DNAf system of two techniques for the evaluation of DNA fragmentation in human spermatozoa. Asian Journal of Andrology, 18(6), 835–839. https://doi.org/10.4103/1008-682X.186875
Sadeghi, S., Pertusa, J., Yaniz, J. L., Nuñez, J., Soler, C., & Silvestre, M. A. (2018). Effect of different oxidative stress degrees generated by hydrogen peroxide on motility and DNA fragmentation of zebrafish (Danio rerio) spermatozoa. Reproduction in Domestic Animals, 53(6), 1498–1505. https://doi.org/10.1111/RDA.13296
Saint-Dizier, M., Mahé, C., Reynaud, K., Tsikis, G., Mermillod, P., & Druart, X. (2020). Sperm interactions with the female reproductive tract: A key for successful fertilization in mammals. Molecular and Cellular Endocrinology, 516, Article 110956. https://doi.org/10.1016/J.MCE.2020.110956
Scanes, C. G. (2018). Chapter 6 - The neolithic revolution, animal domestication, and early forms of animal agriculture. In C. G. Scanes, & S. R. Toukhsati (Eds.), Animals and human society (pp. 103–131). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-805247-1.00006-X
Scherf, B. (2000). Farm animal genetic resources. In B. D. Scherf (Ed.), World watch list for domestic animal diversity (2nd ed.; pp. 37-646). Food and Agriculture Organization of the United Nations. https://cgspace.cgiar.org/handle/10568/10343
Schoeller, S. F., Holt, W. V., & Keaveny, E. E. (2020). Collective dynamics of sperm cells. Philosophical Transactions of the Royal Society B, 375, Article 20190384. https://doi.org/10.1098/RSTB.2019.0384
Selvaraju, S., Parthipan, S., Somashekar, L., Binsila, B. K., Kolte, A. P., Arangasamy, A., Ravindra, J. P., & Krawetz, S. A. (2018). Current status of sperm functional genomics and its diagnostic potential of fertility in bovine (Bos taurus). Systems Biology in Reproductive Medicine, 64(6), 484–501. https://doi.org/10.1080/19396368.2018.1444816
Sharma, R. S., Saxena, R., & Singh, R. (2018). Infertility & assisted reproduction: A historical & modern scientific perspective. Indian Journal of Medical Research, 148(Suppl. 1), S10–S14. https://bit.ly/3Xn27Q5
Sicuro, B. (2021). World aquaculture diversity: origins and perspectives. Reviews in Aquaculture, 13(3), 1619–1634. https://doi.org/10.1111/RAQ.12537
Soler, C., & Cooper, T. G. (2016). Foreword to sperm morphometrics today and tomorrow special issue in Asian Journal of Andrology. Asian Journal of Andrology, 18(6), 815–818. https://doi.org/10.4103/1008-682X.187582
Soler, C., Cooper, T. G., Valverde, A., & Yániz, J. L. (2016). Afterword to sperm morphometrics today and tomorrow special issue in Asian Journal of Andrology. Asian Journal of Andrology, 18(6), 895–897. https://doi.org/10.4103/1008-682X.188451
Soler, C., García-Molina, A., Contell, J., Silvestre, M. A., & Sancho, M. (2015). The Trumorph℗® system: The new universal technique for the observation and analysis of the morphology of living sperm. Animal Reproduction Science, 158, 1–10. https://doi.org/10.1016/J.ANIREPROSCI.2015.04.001
Soler, C., García-Molina, A., Sancho, M., Contell, J., Núñez, M., & Cooper, T. G. (2016). A new technique for analysis of human sperm morphology in unstained cells from raw semen. Reproduction, Fertility, and Development, 28(4), 428–433. https://doi.org/10.1071/RD14087
Soler, C., Picazo-Bueno, J. Á., Micó, V., Valverde, A., Bompart, D., Blasco, F. J., Álvarez, J. G., & García-Molina, A. (2018). Effect of counting chamber depth on the accuracy of lensless microscopy for the assessment of boar sperm motility. Reproduction, Fertility and Development, 30(6), 924–934. https://doi.org/10.1071/RD17467
Soler, C., Valverde, A., Bompart, D., Fereidounfar, S., Sancho, M., Yániz, J. L., Garcia-Molina, A., & Korneenko-Zhilyaev, Y. A. (2017). New methods of semen analysis by casa. Agricultural Biology, 52(2), 232–241. https://doi.org/10.15389/agrobiology.2017.2.232eng
Stickney, R. R. (1990). A global overview of aquaculture production. Food Reviews International, 6(3), 299–315. https://doi.org/10.1080/87559129009540874
Teletchea, F. (2019). Animal domestication: A brief overview. In F Teletchea (Ed.), Animal domestication. IntechOpen. https://doi.org/10.5772/intechopen.86783
Tung, C. -K., Lin, C., Harvey, B., Fiore, A. G., Ardon, F., Wu, M., & Suarez, S. S. (2017). Fluid viscoelasticity promotes collective swimming of sperm. Scientific Reports, 7, Article 3152. https://doi.org/10.1038/s41598-017-03341-4
Valverde, A., Areán, H., Fernández, A., Bompart, D., García-Molina, A., López-Viana, J., & Soler, C. (2019). Combined effect of type and capture area of counting chamber and diluent on Holstein bull sperm kinematics. Andrologia, 51(4), Article e13223. https://doi.org/10.1111/and.13223
Valverde, A., Arenán, H., Sancho, M., Contell, J., Yániz, J., Fernández, A., & Soler, C. (2016). Morphometry and subpopulation structure of Holstein bull spermatozoa: Variations in ejaculates and cryopreservation straws. Asian Journal of Andrology, 18(6), 851–857. https://doi.org/10.4103/1008-682X.187579
Valverde, A., Barquero, V., & Soler, C. (2020). The application of computer-assisted semen analysis (CASA) technology to optimise semen evaluation. A review. Journal of Animal and Feed Sciences, 29(3), 189–198. https://doi.org/10.22358/JAFS/127691/2020
Valverde, A., & Madrigal-Valverde, M. (2018). Computer-assisted semen analysis systems in animal reproduction. Agronomía Mesoamericana, 29(2), 469–484. https://doi.org/10.15517/ma.v29i2.30613
Valverde, A., & Madrigal-Valverde, M. (2019). Evaluación de cámaras de recuento sobre parámetros espermáticos de verracos analizados con un sistema CASA-Mot. Agronomía Mesoamericana, 30(2), 447–458. https://doi.org/10.15517/am.v30i1.34145
Valverde, A., Madrigal-Valverde, M., Lotz, J., Bompart, D., & Soler, C. (2019). Effect of video capture time on sperm kinematic parameters in breeding boars. Livestock Science, 220, 52–56. https://doi.org/10.1016/j.livsci.2018.12.008
Valverde, A., Madrigal, M., Caldeira, C., Bompart, D., Núñez de Murga, J., Arnau, S., & Soler, C. (2019). Effect of frame rate capture frequency on sperm kinematic parameters and subpopulation structure definition in boars, analysed with a CASA-Mot system. Reproduction in Domestic Animals, 54(2), 167–175. https://doi.org/10.1111/rda.13320
Van Leeuwenhoek, A. (1679). Observationes D. Anthonii Lewenhoeck, de natis’e semine genitali animalculis. Philosophical Transactions of the Royal Society of London, 12(142), 1040–1046. https://doi.org/10.1098/RSTL.1677.0068
Vasilescu, S. A., Khorsandi, S., Ding, L., Bazaz, S. R., Nosrati, R., Gook, D., & Warkiani, M. E. (2021). A microfluidic approach to rapid sperm recovery from heterogeneous cell suspensions. Scientific Reports, 11, Article 7917. https://doi.org/10.1038/s41598-021-87046-9
Vasquez, E. S., Feugang, J. M., Willard, S. T., Ryan, P. L., & Walters, K. B. (2016). Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa. Journal of Nanobiotechnology, 14, Article 20. https://doi.org/10.1186/s12951-016-0168-y
Víquez, L., Barquero, V., Soler, C., Roldan, E. R. S., & Valverde, A. (2020). Kinematic sub-populations in bull spermatozoa: A comparison of classical and bayesian approaches. Biology, 9(6), Article 138. https://doi.org/10.3390/biology9060138
Víquez, L., Barquero, V., & Valverde, A. (2021). Optimal conditions for the kinematic analysis in fresh semen of Brahman bulls with a CASA-Mot system. Agronomía Mesoamericana, 32(3), 920–938. https://doi.org/10.15517/AM.V32I3.42768
Wallberg, A., Han, F., Wellhagen, G., Dahle, B., Kawata, M., Haddad, N., Simões, Z. L. P., Allsopp, M. H., Kandemir, I., De la Rúa, P., Pirk, C. W., & Webster, M. T. (2014). A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nature Genetics, 46, 1081–1088. https://doi.org/10.1038/ng.3077
Williams, B. (1996). Descartes. El Proyecto de una investigación pura. Cátedra.
World Health Organization (Ed.). (2021). WHO laboratory manual for the examination and processing of human semen (6th ed.). https://www.who.int/publications/i/item/9789240030787
Yániz, J. L., Soler, C., Alquézar-Baeta, C., & Santolaria, P. (2017). Toward an integrative and predictive sperm quality analysis in Bos taurus. Animal Reproduction Science, 181, 108–114. https://doi.org/10.1016/j.anireprosci.2017.03.022
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 Carles Soler, Anthony Valverde (Autor/a)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).





















