Use of jackfruit (Artocarpus heterophyllus Lam.) as an agroindustrial byproduct in animal feeding: A systematic review

Authors

DOI:

https://doi.org/10.15517/am.2025.173

Keywords:

bioactive compounds, samll ruminants, poultry, rats

Abstract

Introduction. Currently, food industry innovation results in the generation of thousands of tons of organic waste that negatively impacts environmental sustainability. Therefore, it is important to implement actions that contribute to waste reduction and utilize bioactive compounds effectively. Objective. To conduct a systematic literature review on the nutrients and bioactive compounds present in the main components of jackfruit (peel, pulp, and seed), to evaluate its potential incorporation into livestock feed. Development. A systematic review was conducted based on experimental articles retrieved from ScienceDirect, Wiley, Google Scholar, Scopus, and Springer Link databases. A specific search equation was employed for this purpose. Results demonstrated that different jackfruit components contain nutrients (proteins, carbohydrates, minerals) and bioactive compounds (polyphenols, flavonoids, polysaccharides, phenols, etc.) that have demonstrated positive effects when incorporated into livestock feed (broilers, sheep, and goats). Conclusions. The incorporation of jackfruit into animal feed promotes weight gain, improves digestibility, stimulates the immune system, and reduces feed production costs.

References

Adan, A. A., Ojwang, R. A., Muge, E. K., Mwanza, B. K., & Nyaboga, E. N. (2020). Phytochemical composition and essential mineral profile, antioxidant and antimicrobial potential of unutilized parts of jackfruit. Food Research, 4(4), 1125–1134. https://doi.org/10.26656/fr.2017.4(4).326

Agiang, M. A., Dongo, B. S., Williams, I. O., & Utu-Baku, A. B. (2017). Assessment of the haematological indices of albino rats fed diets supplemented with jackfruit bulb, seed or a blend of bulb and seed. International Journal of Biological and Chemical Sciences, 11(1), 397–407. http://dx.doi.org/10.4314/ijbcs.v11i1.31

Ahmed, J., & Thomas, L. (2020). Oscillating rheology of jackfruit (Artocarpus heterophyllus) seed flour dough in relation to different particle size. Journal of Food Process Engineering, 43(12), Article e13558. https://doi.org/10.1111/jfpe.13558

Akmeemana, C., Wickramasinghe, I., Wanniarachchi, P. C., & Vithanage, T. (2022). Effect of drying and frying pre-treatments on nutrient profile, antioxidant capacity, cooking time, and sensory acceptability of easy to cook jackfruit seeds. Applied Food Research, 2(2), Article 100234. https://doi.org/10.1016/j.afres.2022.100234

Antonisamy, A. J., Marimuthu, S., Malayandi, S., Rajendran, K., Lin, Y.-C., Andaluri, G., Lee, S. L., & Ponnusamy, V. K. (2023). Sustainable approaches on industrial food wastes to value-added products – A review on extraction methods, characterizations, and its biomedical applications. Environmental Research, 217, Article 114758. https://doi.org/10.1016/j.envres.2022.114758

Aroh, I. M., Odukwe, C. N., Macartan, B. P., Agida, C. A., Ullah, K., & Archibong, B. U. (2023). Raw jackfruit (Artocarpus heterophyllus) Seedmeal: effect on growth performance, organ weight, carcass yield, and economic production of guinea fowl keets. Journal of Applied Life Sciences International, 26(4), 31–41. https://doi.org/10.9734/jalsi/2023/v26i4612

Barros-Castillo, J. C., Calderón-Santoyo, M., García-Magaña, M. L., Calderón-Chiu, C., & Ragazzo-Sánchez, J. A. (2022). Volatile compounds released by acid hydrolysis in jackfruit (Artocarpus heterophyllus Lam.). A comparative study by using SDE and HS-SPME techniques. Journal of Food Composition and Analysis, 113, Article 104701. https://doi.org/10.1016/j.jfca.2022.104701

Begum, R., Aziz, M. G., Yusof, Y. A., Saifullah, M., & Uddin, M. B. (2021). Evaluation of gelation properties of jackfruit (Artocarpus heterophyllus) waste pectin. Carbohydrate Polymer Technologies and Applications, 2, Article 100160. https://doi.org/10.1016/j.carpta.2021.100160

Brahma, R., & Ray, S. (2022). In-depth analysis on potential applications of jackfruit peel waste: A systematic approach. Food Chemistry Advances, 1, Article 100119. https://doi.org/10.1016/j.focha.2022.100119

Brahma, R., & Ray, S. (2024). Optimization of extraction conditions for cellulose from jackfruit peel using RSM, its characterization and comparative studies to commercial cellulose. Measurement: Food, 13, Article 100130. https://doi.org/10.1016/j.meafoo.2023.100130

Cagasan, C. U., Lingatong, C. A., Pore, K. M., Ramada, R., Restor, C. D., & Lauzon, R. (2021). Production and quality evaluation of wine from jackfruit co-products. International Journal of Life Sciences and Biotechnology, 4(3), 340–352. https://doi.org/10.38001/ijlsb.827739

Chavez-Santiago, J. O., Rodríguez-Castillejos, G. C., Montenegro, G., Bridi, R., Valdés-Gómez, H., Alvarado-Reyna, S., Castillo-Ruiz, O., & Santiago-Adame, R. (2022). Phenolic content, antioxidant and antifungal activity of jackfruit extracts (Artocarpus heterophyllus Lam.). Food Science and Technology, 42, Article e02221. https://doi.org/10.1590/fst.02221

Chowdhury, F. A., Raman, Md. A., & Mian, A. J. (1997). Distribution of free sugars and fatty acids in jackfruit (Artocarpus heterophyllus). Food Chemistry, 60(1), 25–28. https://doi.org/10.1016/S0308-8146(96)00294-4

Cruz-Casillas, F. C., García-Cayuela, T., & Rodriguez-Martinez, V. (2021). Application of conventional and non-conventional extraction methods to obtain functional ingredients from jackfruit (Artocarpus heterophyllus Lam.) tissues and by-products. Applied Sciences, 11(16), Article 7303. https://doi.org/10.3390/app11167303

Eburuaja, A. S., Onabanjo, R. S., Onunkwo, D. N., & Ukenye, U. S. (2019). Performance of broiler chickens fed graded dietary levels of toasted jackfruit seed meal (Artocarpus heterophyllus). Nigerian Journal of Animal Production, 46(4), 171–178. https://doi.org/10.51791/njap.v46i4.346

Eyoh, G. D., & Udoh, M. D. (2020). Effects of processed jackfruit seed based diet on nutrient intake, digestibility and nutrition in West African dwarf goats. Nigerian Journal of Animal Production, 47(5), 204–212. https://doi.org/10.51791/njap.v47i5.1271

Food and Agriculture Organization. (2022). The green development of special agricultural product-jackfruit in China. https://www.fao.org/3/cc3672en/cc3672en.pdf

Goswami, C., Kazal, M. K. H., Alam, O., Moon, R. J., Khatun, K., Hossan, M., & Chacrabati, R. (2021). Jackfruit seed powder supplementation attenuates high-sugar diet-induced hyperphagia and hyperglycemia in mice. Biology and Life Sciences Forum, 6(1), 92. https://doi.org/10.3390/Foods2021-10970

Informes de Expertos. (2023). Mercado global de jackfruit. https://www.informesdeexpertos.com/informes/mercado-de-jackfruit

International Tropical Fruits Network. (2022). Report on the international webinar on ´Developing the jackfruit for global consumption and markets´. https://www.itfnet.org/v1/wp-content/uploads/2022/07/JACKFRUIT-REPORT-WITH-eISBN.pdf

Isinenyi, G. O., & Andrew, N. (2021). Study on the nutritional compositions of boiled jackfruit seed and its effect on the liver and kidney functions of Wistar albino rats. International Network Organization for Scientific Research, 7(1), 96–108. https://www.inosr.net/wp-content/uploads/2022/01/INOSR-AP-7196-108-2021.-ISINEYI.pdf

Kader, A., Sinha, S. N., & Ghosh, P. (2022). Clonal fidelity investigation of micropropagated hardened plants of jackfruit tree (Artocarpus heterophyllus L.) with RAPD markers. Journal of Genetic Engineering and Biotechnology, 20(1), 145. https://doi.org/10.1186/s43141-022-00426-0

Kamdem Bemmo, U. L., Bindzi, J. M., Tayou Kamseu, P. R., Houketchang Ndomou, S. C., Tene Tambo, S., & Ngoufack Zambou, F. (2023). Physicochemical properties, nutritional value, and antioxidant potential of jackfruit (Artocarpus heterophyllus) pulp and seeds from Cameroon eastern forests. Food Science & Nutrition, 11(8), 4722–4734. http://doi.org/10.1002/fsn3.3437

Konsue, N., Bunyameen, N., & Donlao, N. (2023). Utilization of young jackfruit (Artocarpus heterophyllus Lam.) as a plant-based food ingredient: influence of maturity on chemical attributes and changes during in vitro digestion. LWT - Food Science and Technology, 180, Article 114721. https://doi.org/10.1016/j.lwt.2023.114721

Krishnan Sundarrajan, S., & Pottail, L. (2021). Green synthesis of bimetallic Ag@Au nanoparticles with aqueous fruit latex extract of Artocarpus heterophyllus and their synergistic medicinal efficacies. Applied Nanoscience, 11, 971–981. https://doi.org/10.1007/s13204-020-01657-8

Kushwaha, R., Gupta, A., Singh, V., Kaur, S., Puranik, V., & Kaur, D. (2023). Jackfruit seed flour-based waffle ice cream cone: optimization of ingredient levels using response surface methodology. Heliyon, 9(2), Article e13140. https://doi.org/10.1016/j.heliyon.2023.e13140

Lazarus, B. S., Leung, V., Luu, R. K., Wong, M. T., Ruíz-Pérez, S., Barbosa, W. T., Almeida Bezerra, W. B., Barbosa, J. D. V., & Meyers, M. A. (2023). Jackfruit: composition, structure, and progressive collapsibility in the largest fruit on the Earth for impact resistance. Acta Biomaterialia, 166, 430–446. https://doi.org/10.1016/j.actbio.2023.04.040

Le, T. A. N., Lee, J. J. L., & Chen, W. N. (2023). Stimulation of lactic acid production and Lactobacillus plantarum growth in the coculture with Bacillus subtilis using jackfruit seed starch. Journal of Functional Foods, 104, Article 105535. https://doi.org/10.1016/j.jff.2023.105535

Li, B., Wang, H., Wang, X., Zhang, Y., Tan, Y., Zhang, Y., Chu, Z., & Zhang, Y. (2019). Prediction of the postprandial blood sugar response estimated by enzymatic kinetics of in vitro digestive and fine molecular structure of Artocarpus heterophyllus lam seed starch and several staple crop starches. Starch - Stärke, 71(9–10), Article 1800351. https://doi.org/10.1002/star.201800351

Li, Y.-F., Wu, B., Chen, J.-P., Veeraperumal, S., Wei, J.-C., Tan, K.-S., Zhong, S., & Cheong, K.-L. (2023). Prebiotic characteristics of added-value polysaccharides from jackfruit peel waste during in vitro digestion and fecal fermentation. LWT - Food Science and Technology, 187, Article 115330. https://doi.org/10.1016/j.lwt.2023.115330

Luciano, C. G., Landi Franco, C. M., Ayala Valencia, G., Do Amaral Sobral, P. J., & Freitas Moraes, I. C. (2017). Evaluation of extraction method on the structure and physicochemical properties of starch from seeds of two jackfruit varieties. Starch - Stärke, 69(11–12), Article 1700078. https://doi.org/10.1002/star.201700078

Maradesha, T., Patil, S. M., Al-Mutairi, K. A., Ramu, R., Madhunapantula, S. V., & Alqadi, T. (2022). Inhibitory effect of polyphenols from the whole green jackfruit flour against α-glucosidase, α-amylase, aldose reductase and glycation at multiple stages and their interaction: inhibition kinetics and molecular simulations. Molecules, 27(6), Article 1888. https://doi.org/10.3390/molecules27061888

Maradesha, T., Patil, S. M., Phanindra, B., Achar, R. R., Silina, E., Stupin, V., & Ramu, R. (2022). Multiprotein inhibitory effect of dietary polyphenol rutin from whole green jackfruit flour targeting different stages of diabetes mellitus: defining a bio-computational stratagem. Separations, 9(9), Article 262. https://doi.org/10.3390/separations9090262

Mashudi, M., & Nurmawati, W. (2022). Effect of fermentation on mixed rumen contents and jackfruit peel using Aspergillus oryzae on in vitro gas production and digestibility. E3S Web of Conferences, 335, Article 00048. https://doi.org/10.1051/e3sconf/202233500048

Moisés de Sousa, A. P., Nascimento Campos, A. R., Palmeira Gomes, J., Costa de Santana, R. A., De França Silva, A. P., Buriti de Macedo, A. D., & Dantas Costa, J. (2020). Protein enrichment of jackfruit peel waste through solid-state fermentation. Revista Brasileira de Ciências Agrárias, 15(1), Article e6406. https://doi.org/10.5039/agraria.v15i1a6406

Morelos-Flores, D. A., Anzaldo-Mendiola, R. L., Montalvo-González, E., Zamora-Gasga, V. M., Chacón-López, M. A., Santacruz-Varela, A., & García-Magaña, M. L. (2023). Characterization and antioxidant capacity of phenolic compounds of jackfruit genotypes from Nayarit, Mexico. Food Chemistry Advances, 3, Article 100470. https://doi.org/10.1016/j.focha.2023.100470

Nakintu, J., Andama, M., Albrecht, C., Wangalwa, R., Lejju, J. B., & Olet, E. A. (2023). Morphological traits of jackfruit (Artocarpus heterophyllus Lam.): indicators of diversity, selection and germplasm dispersion in Uganda. Scientific African, 22, Article e01900. https://doi.org/10.1016/j.sciaf.2023.e01900

Nantongo, J. S., Mudondo, S., Oluk, R., Agaba, H., & Gwali, S. (2022). Variation in seed and seedling traits of the different ethno-varieties of jackfruit, a potential fruit tree species for food security. Trees, Forests and People, 9, Article 100303. https://doi.org/10.1016/j.tfp.2022.100303

National Plant Germplasm System. (2023). Taxon: Artocarpus heterophyllus Lam. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomydetail?id=70095

Natta, S., Pal, K., Alam, B. K., Mondal, D., Dutta, S. K., Sahana, N., Mandal, S., Bhowmick, N., Das, S. S., Mondal, P., Pandit, G. K., Paul, P. K., & Choudhury, A. (2023). In-depth evaluation of nutritive, chemical constituents and anti-glycemic properties of jackfruit (Artocarpus heterophyllus Lam) clonal accessions with flake colour diversity from Eastern Sub-Himalayan plains of India. Food Chemistry, 407, Article 135098. https://doi.org/10.1016/j.foodchem.2022.135098

Nidhina, K., Abraham, B., Fontes-Candia, C., Martínez-Abad, A., Martínez-Sanz, M., Nisha, P., & López-Rubio, A. (2022). Physicochemical and functional properties of pectin extracted from the edible portions of jackfruit at different stages of maturity. Journal of the Science of Food and Agriculture, 103(6), 3194–3204. https://doi.org/10.1002/jsfa.12391

Odukwe, C. N., Onunkwo, D. N., Eburuaja, A. S., & Mathias, V. N. (2017). Carcass and internal organ characteristics of broiler chickens fed soybean diets partially replaced with variable levels of raw jackfruit seed meal. Nigeria Agricultural Journal, 48(1), 190–198. https://www.ajol.info/index.php/naj/article/view/162708

Ortega-González, L., Güemes-Vera, N., Piloni-Martini, J., Quintero-Lira, A., & Soto-Simental, S. (2022). Substitution of wheat flour by jackfruit (Artocarpus heterophyllus lam.) seed flour: effects on dough rheology and deep-frying doughnuts texture and sensory analysis. International Journal of Gastronomy and Food Science, 30, Article 100612. https://doi.org/10.1016/j.ijgfs.2022.100612

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790–799. https://doi.org/10.1016/j.recesp.2021.06.016

Papa Spada, F., Da Silva, P. P. M., Mandro, G. F., Margiotta, G. B., Spoto, M. H. F., & Canniatti-Brazaca, S. G. (2018). Physicochemical characteristics and high sensory acceptability in cappuccinos made with jackfruit seeds replacing cocoa powder. PLoS ONE, 13(8), Article e0197654. https://doi.org/10.1371/journal.pone.0197654

Ramli, A. N. M., Hamid, H. A., Zulkifli, F. H., Zamri, N., Bhuyar, P., & Manas, N. H. A. (2021). Physicochemical properties and tenderness analysis of bovine meat using proteolytic enzymes extracted from pineapple (Ananas comosus) and jackfruit (Artocarpus heterophyllus) by-products. Journal of Food Processing and Preservation, 45(11), Article e15939. https://doi.org/10.1111/jfpp.15939

Ramos-Martínez, O., González-Cruz, E. M., Calderón-Santoyo, M., & Ragazzo-Sánchez, J. A. (2022). Polyisoprenes obtained from jackfruit latex (Artocarpus heterophyllus L.): extraction and characterization. Journal of Applied Polymer Science, 139(25), Article e52392. https://doi.org/10.1002/app.52392

Ranasinghe, R. A. S. N., Maduwanthi, S. D. T., & Marapana, R. A. U. J. (2019). Nutritional and health benefits of jackfruit (Artocarpus heterophyllus lam.): A review. International Journal of Food Science, 2019(1), Article 4327183. https://doi.org/10.1155/2019/4327183

Rubiyah, M. H., Melethil, K., Varghese, S., Kurian, M., Babu, S., Jojo, L., & Thomas, B. (2023). Isolation and characterization of cellulose nanofibrils from agro-biomass of Jackfruit (Artocarpus heterophyllus) rind, using a soft and benign acid hydrolysis. Carbohydrate Polymer Technologies and Applications, 6, Article 100374. https://doi.org/10.1016/j.carpta.2023.100374

Sabidi, S., Koh, S. P., Abd Shukor, S., Adzni Sharifudin, S., & Sew, Y. S. (2020). Safety assessment of fermented jackfruit (Artocarpus heterophyllus) pulp and leaves in Sprague-Dawley rats. Food Science & Nutrition, 8(8), 4370–4378. https://doi.org/10.1002/fsn3.1734

Samrot, A. V., & Sean, T. C. (2022). Investigating the antioxidant and antimicrobial activity of Artocarpus heterophyllus Lam. (Jackfruit) Latex. Biointerface Research in Applied Chemistry, 12(3), 3019–3033. http://dpi.org/10.33263/BRIACI23.30193033

Servicio de Información Agroalimentaria y Pesquera. (2022). Anuario estadístico de la producción agrícola. https://nube.siap.gob.mx/cierreagricola/

Spada, F. P., De Alencar, S. M., & Purgatto, E. (2022). Comprehensive chocolate aroma characterization in beverages containing jackfruit seed flours and cocoa powder. Future Foods, 6, Article 100158. https://doi.org/10.1016/j.fufo.2022.100158

Sulaiman, M. A., Yusoff, F. M., Kamarudin, M. S., Amin, S. M. N., & Kawata, Y. (2022). Fruit wastes improved the growth and health of hybrid red tilapia Oreochromis sp. and Malaysian mahseer, Tor tambroides (Bleeker, 1854). Aquaculture Reports, 24, Article 101177. https://doi.org/10.1016/j.aqrep.2022.101177

Sy Mohamad, S. F., Mohd Said, F., Abdul Munaim, M. S., Mohamad, S., & Wan Sulaiman, W. M. A. (2019). Proximate composition, minerals contents, functional properties of Mastura variety jackfruit (Artocarpus heterophyllus) seeds and lethal effects of its crude extract on zebrafish (Danio rerio) embryos. Food Research, 3(5), 546–555. https://doi.org/10.26656/fr.2017.3(5).095

Thanh, L. P., Kha, P. T. T., Tinh, P. V. T., & Hang, T. T. T. (2021). Effect of jackfruit leaves on feed utilization and ruminal fermentation of growing goats. Livestock Research for Rural Development, 33(8), Article 104. https://www.lrrd.org/lrrd33/8/33104phuoc.html

Ulloa, J. A., Villalobos Barbosa, M. C., Resendiz Vazquez, J. A., Rosas Ulloa, P., Ramírez Ramírez, J. C., Silva Carrillo, Y., & González Torres, L. (2017). Production, physico-chemical and functional characterization of a protein isolate from jackfruit (Artocarpus heterophyllus) seeds. CYTA - Journal of Food, 15(4), 497–507. https://doi.org/10.1080/19476337.2017.1301554

Utari, A., & Warly, L. (2021). Tannin contents of jackfruit leaves (Artocarpus heterophyllus) extract and moringa leaves (Moringa oleifera) extract as functional additive feed in ruminan livestock. IOP Conference Series: Earth and Environmental Science, 757, Article 012054. http://doi.org/10.1088/1755-1315/757/1/012054

Wignyanto, W., Rahmah, N. L., & Margani, A. D. (2014). The best solvent and extraction time in pectin production made from waste of jackfruit (bark and straw). Agroindustrial Journal, 3(1), 141–148. https://doi.org/10.22146/aij.v3i1.25030

Wirayudha, P., Setyono, W., Budisatria, I. G. S., Rahmawati, R., & Kustantinah, K. (2022). Effects of dietary supplementation with jackfruit leaves and soybean meal on nutrient intake and digestibility in sheep. Proceedings of the 6th International Seminar of Animal Nutrition and Feed Science, 21, 82–85. http://doi.org/10.2991/absr.k.220401.018

Wu, J., Zhou, X., Zhou, L., Liu, W., Zhong, J., Zhang, Y., & Liu, C. (2022). Physicochemical, structural, and functional properties of protein fractions and protein isolate from jackfruit seeds. Journal of Food Science, 87(4), 1540–1551. https://doi.org/10.1111/1750-3841.16104

Xu, F., He S. Z., Chu, Z., Zhang Y. J., & Tan, L. H. (2015). Effects of heat treatment on polyphenol oxidase activity and textural properties of jackfruit bulb. Journal of Food Processing and Preservation, 40(5), 943–949. https://doi.org/10.1111/jfpp.12673

Zeng, S., Cao, J., Wei, C., Chen, Y., Liu, Q., Li, C., Zhang, Y., Zhu., K., Wu, G., & Tan, L. (2023). Polysaccharides from Artocarpus heterophyllus Lam. (jackfruit) pulp alleviate obesity by modulating gut microbiota in high fat diet-induced rats. Food Hydrocolloids, 139, Article 108521. https://doi.org/10.1016/j.foodhyd.2023.108521

Zhang, L., Tu, Z.-C., Xie, X., Wang, H., Wang, H., Wang, Z.-X., Sha, X.-M., & Lu, Y. (2017). Jackfruit (Artocarpus heterophyllus Lam.) peel: a better source of antioxidants and α-glucosidase inhibitors than pulp, flake and seed, and phytochemical profile by HPLC-QTOF-MS/MS. Food Chemistry, 234, 303–313. https://doi.org/10.1016/j.foodchem.2017.05.003

Zhang, Z., Wang, Y., Zhang, Y., Chen, K., Chang, H., Ma, C., Jiang, S., Huo, D., Liu, W., Jha, R., & Zhang, J. (2021). Synergistic effects of the jackfruit seed sourced resistant starch and Bifidobacterium pseudolongum subsp. globosum on suppression of hyperlipidemia in mice. Foods, 10(6), Article 1431. https://doi.org/10.3390/foods10061431

Zuwariah, I., Noor Fadilah, M. B., Hadijah, H., & Rodhiah, R. (2018). Comparison of amino acid and chemical composition of jackfruit seed flour treatment. Food Research, 2(6), 539–545. https://doi.org/10.26656/fr.2017.2(6).106

Published

31-03-2025

Issue

Section

Literature Reviews

Categories

How to Cite

Use of jackfruit (Artocarpus heterophyllus Lam.) as an agroindustrial byproduct in animal feeding: A systematic review. (2025). Agronomía Mesoamericana, 36, 60851. https://doi.org/10.15517/am.2025.173

Similar Articles

You may also start an advanced similarity search for this article.